如果您接触过数据仓库, 您可能会使用 ETL (Extract、 Transform、 Load) 或 ELT ( Extract、Load、 Transform) 将您的数据从不同的来源提取到数据仓库中。这些是移动数据或集成数据的常用方法, 以便您可以关联来自不同来源的信息, 将数据安全地存储在一个位置, 并使公司的成员能够从不同业务部门查看综合数据。ETL和ELT两个术语的区别与过程的发生顺序有关。这些方法都适合于不同的情况。
我最初是一个Oracle开发者,我喜欢它的结构化查询语言,一年后,我意识到SQL并非Oracle的专有。 作为70年代Sequel标准的一个分支,SQL走向成熟并且成为全世界数据库用户广泛应用的语言。其一是因为SQL简单(基于英语词汇),同 时它又能解决很多复杂的问题。SQL是当代最容易学习和使用的语言之一。ANSI-SQL标准几乎被所有主流关系型数据库所接受,如Oracle,DB2 和SQL Server,当客户决定从一个数据库迁移到另一个时,它极大地提高了可移植性。 在接触ETL工具前,将近五年的时间
ETL是将业务系统的数据经过抽取、清洗转换之后加载到数据仓库的过程,目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据。
随着企业的发展,各业务线、产品线、部门都会承建各种信息化系统方便开展自己的业务。随着信息化建设的不断深入,由于业务系统之间各自为政、相互独立造成的数据孤岛”现象尤为普遍,业务不集成、流程不互通、数据不共享。这给企业进行数据的分析利用、报表开发、分析挖掘等带来了巨大困难。
传统行业各业务系统数据相对独立,随着信息平台一体化、数据中台及大数据时代的推进,要求各业务系统数据相互融合,业务资源共享。
信息是现代企业的重要资源,是企业运用科学管理、决策分析的基础。据统计,数据量每经过2-3年时间就会成倍增长,这些数据蕴含着巨大的商业价值,而企业所关注的通常只占总数据量的2%~4%左右。因此,企业仍然没有最大化地利用已存在的数据资源,以至于浪费了更多的时间和资金,也失去制定关键商业决策的最佳契机。
ETL是将数据从来源端经过清洗(extract)、转换(transform)、加载(load)至目的端的过程。正常的 ETL 过程应当是 E、T、L 这三个步骤逐步进行,也就是先清洗转换之后再加载进目标端(通常是数据库),最后在数据库中的只是合理的结果数据。这个过程本来很合理,但实际过程中经常被执行成ELT甚至LET,即源端数据先装载进目标库再进行清洗和转换。
ETL是BI项目最重要的一个环节,通常情况下ETL会花掉整个项目的1/3的时间,ETL设计的好坏直接关接到BI项目的成败。ETL也是一个长期的过程,只有不断的发现问题并解决问题,才能使ETL运行效率更高,为项目后期开发提供准确的数据。
我在2017年写了一本名为《Hadoop构建数据仓库实践》的书。在这本书中,较为详细地讲解了如何利用Hadoop(Cloudera's Distribution Including Apache Hadoop,CDH)生态圈组件构建传统数据仓库。例如,使用Sqoop从关系数据库全量或增量抽取数据到Hadoop系统,使用Hive进行数据转换和装载处理等等。作为进阶,书中还说明了数据仓库技术中的渐变维、代理键、角色扮演维度、层次维度、退化维度、无事实事实表、迟到事实、累计度量等常见问题在Hadoop上的处理。它们都是通过Hive SQL来实现的,其中有些SQL语句逻辑复杂,可读性也不是很好。
概述 在我们学习ETL测试之前,先了解下business intelligence(即BI)和数据仓库。 什么是BI? BI(Business Intelligence)即商务智能,它是一套完整的解决方案,用来将企业中现有的数据(原始数据或商业数据或业务数据等)进行有效的整合,快速准确地提供报表并提出决策依据,帮助企业做出明智的业务经营决策。 原始数据记录了企业日常事务,例如与客户交互的信息、财务信息,员工相关记录等等。 这些数据可以用于汇报、分析、挖掘、数据质量、交互、预测分析等等 什么是数据仓库 数
概述 在我们学习ETL测试之前,先了解下business intelligence(即BI)和数据仓库。 什么是BI? BI(Business Intelligence)即商务智能,它是一套完整的解决方案,用来将企业中现有的数据(原始数据或商业数据或业务数据等)进行有效的整合,快速准确地提供报表并提出决策依据,帮助企业做出明智的业务经营决策。 原始数据记录了企业日常事务,例如与客户交互的信息、财务信息,员工相关记录等等。 这些数据可以用于汇报、分析、挖掘、数据质量、交互、预测分析等等 什么是数据仓库
说到ETL,很多开发伙伴可能会有些陌生,更多的时候 ETL 是用在大数据、数据分析的相关岗位;我也是在近几年的工作过程中才接触到ETL的,现在的项目比较依赖 ETL,可以说是项目中重要的一部分。
我们知道,数据库的数据处理能力是封闭的。所谓封闭性,这里是指要被数据库计算和处理的数据,必须事先装入数据库之内,数据在数据库内部还是外部是很明确的。
刘耀铭同学元数据系列作品的第一篇,大家支持! 其他元数据相关系列文章: 基于元数据驱动的ETL Hive 元数据表结构详解 1、 元数据是描述其他数据的数据(data about other data),用于提供某种资源有关信息的结构化数据(structed data)。字面上看无法看出所以然,但其实看对应的英文含义就明确了,Meta指“对······的描述”类似Meta tag,所以元数据就是对数据的解释和描述。 2、 这里主要将数据仓库的元数据分为3类:DBMS数据字典、ETL处理流程产生的日志、BI
核心技术架构挑战: 1、对现有数据库管理技术的挑战。 2、经典数据库技术并没有考虑数据的多类别(variety)、SQL(结构化数据查询语言),在设计的一开始是没有考虑到非结构化数据的存储问题。 3、实时性技术的挑战:一般而言,传统数据仓库系统,BI应用,对处理时间的要求并不高。因此这类应用通过建模,运行1-2天获得结果依然没什么问题。但实时处理的要求,是区别大数据应用和传统数据仓库技术、BI技术的关键差别之一。 4、网络架构、数据中心、运维的挑战:随着每天创建的数据量爆炸性的增长,就数据保存来说,
抛开大数据的概念与基本知识,进入核心。我们从:数据采集、数据存储、数据管理、数据分析与挖掘,四个方面讨论大数据在实际应用中涉及的技术与知识点。 核心技术 架构挑战: 1. 对现有数据库管理技术的挑战。 2. 经典数据库技术并没有考虑数据的多类别(variety)、SQL(结构化数据查询语言),在设计的一开始是没有考虑到非结构化数据的存储问题。 3. 实时性技术的挑战:一般而言,传统数据仓库系统,BI应用,对处理时间的要求并不高。因此这类应用通过建模,运行1-2天获得结果依然没什么问题。但实时处理的要求,是区
在大型数据库架构中,PSE主要用于数据的采集和处理,授权点数最多可达无限点;PME功能的强大之处在于数据的分析功能,软件具有灵活的交互性和可拓展性。通过视窗、表格、趋势、报警、报告等方式追溯能源消耗,减少不必要的能源浪费,展现节能成果等。目前相关功能使用最多是用PSE作为SCADA进行数据的采集功能,PME作为能源管理系统,进行能效的分析。通过在PSE里批量建立数据库,然后使用PME的ETL功能共享数据库,最后在PME的展示控件里进行分析。通过此种方式可以快速建立数据库,而且还避免了重复建立数据库的工作。
ETL产品的选型工作一直以来都是困扰架构师的一块心病,国外付费产品用不起,国外免费产品学习成本高、不易实施。
ETL(Extract, Transform, Load)是一种广泛应用于数据处理和数据仓库建设的方法论,它主要用于从各种不同的数据源中提取数据,经过一系列的处理和转换,最终将数据导入到目标系统中。本文将介绍如何使用Python进行ETL数据处理的实战案例。
为了实现数据仓库中的更加高效的数据处理,今天和小黎子一起来探讨ETL系统中的增量抽取方式。增量抽取是数据仓库ETL(数据的抽取(extraction)、转换(transformation)和装载(loading))实施过程中需要重点考虑的问题。ETL抽取数据的过程中,增量抽取的效率和可行性是决定ETL实施成败的关键问题之一,做过数据建模的小伙伴都知道ETL中的增量更新机制比较复杂,采用何种机制往往取决于源数据系统的类型以及对增量更新性能的要求。今天我们只重点对各种方法进行对比分析,从而总结各种机制的使用条件和优劣性,为数据仓库项目的ETL工程的实施提供增量抽取技术方案参考。
ETL是数据仓库中的非常重要的一环,是承前启后的必要的一步。ETL负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础 。
Kettle是一款流行的ETL(Extract-Transform-Load,即数据抽取、转换、装载)工具,并可用来操作Hadoop上的数据。Kettle是用Java语言开发的。它最初的作者Matt Casters原是一名C语言程序员,在着手开发Kettle时还是一名Java小白,但是他仅用了一年时间就开发出了Kettle的第一个版本。虽然有很多不足,但这版毕竟是可用的。使用自己并不熟悉的语言,仅凭一己之力在很短的时间里就开发出了复杂的ETL系统工具,作者的开发能力和实践精神令人十分佩服。后来Pentaho公司获得了Kettle源代码的版权,Kettle也随之更名为Pentaho Data Integration,简称PDI。
1、产品—为了满足市场需要,而创建的用于运营的功能及服务”就是产品。产品是以使用为目的物品和服务的综合体。产品分类:服务、软件、硬件、流程性材料。其中这里提供的是软件。
ETL,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程,是数据仓库的生命线。
数据开发是指将数据从不同的来源整合、清洗、转换、存储和分析的过程。数据开发的目的是为了让数据更加有用,以便于企业做出更好的决策。在本文中,我们将介绍数据开发的基本概念,包括数据仓库、ETL、数据建模、数据挖掘和数据可视化等。
开源ETL工具(Kettle) V5.1.0 免费Spoon版 http://www.cr173.com/soft/30051.html ETL工具大全,你了解多少 http://bbs.csdn.net/topics/390349305 Kettle_抽取数据举例 http://blog.csdn.net/huangyanlong/article/details/42264543
我已经谈到了构建属于你自己的数据仓库需要采取的前两个步骤(请参阅:如何在4周内构建数据仓库,第1部分)。选择架构和DBMS是需要完成的第一件事情。到目前为止,我们已经有了需要复制的数据的概念以及我们想要存储数据的数据库。缺失的部分就是复制的过程。我们如何存储复制的数据?我们如何转换数据?这些是我在这篇文章中所要回答的问题。
组织在构建自己专属的技术栈时,会使用到各种不同的相似技术。但也存在一些趋势,如果你正在组建一个新的团队、组织或公司的时候,一开始你可能需要效仿某个现成的技术栈,再依据需求来构建自己的技术栈,还需要对一些过时的技术进行升级。
ETL(Extract, Transform, Load)是一种广泛应用于数据处理和数据仓库建设的方法论,它主要用于从各种不同的数据源中提取数据,经过一系列的处理和转换,最终将数据导入到目标系统中。本文将介绍如何使用Python进行ETL数据处理的实战案例,包括从多个数据源中提取数据、进行数据转换和数据加载的完整流程。
ETL代表提取、转换和加载。它是从任何数据源中提取数据并将其转换为适当格式以供存储和将来参考的过程。
最后,该数据被加载到数据库中。在当前的技术时代,“数据”这个词非常重要,因为大多数业务都围绕着数据、数据流、数据格式等运行。现代应用程序和工作方法需要实时数据来进行处理,为了满足这一目的,市场上有各种各样的ETL工具。
https://flink.apache.org/zh/usecases.html
序号名称软件性质数据同步方式作业调度1Informatica(美国) 入华时间2005年 http://www.informatica.com.cn商业 图形界面 支持增量抽取,增量抽取的处理方式,增量加载的处理方式,提供数据更新的时间点或周期工作流调度,可按时间、事件、参数、指示文件等进行触发,从逻辑设计上,满足企业多任务流程设计。相当专业的ETL工具。IInformatica PowerCenter用于访问和集成几乎任何业务系统、任何格式的数据,它可以按任意速度在企业内交付数据,具有高性能、高可扩展
ETL流程是数据仓库建设的核心环节,它涉及从各种数据源中抽取数据,经过清洗、转换和整合,最终加载到数据仓库中以供分析和决策。在数据仓库国产化的背景下,ETL流程扮演着重要的角色,今天我们就来讲讲ETL流程的概念和设计方式。
taskctl是一款国内开源的ETL工具,纯C编写,可以在Window、Linux、Unix上运行。
本文介绍了如何使用Pentaho Data Integration (Kettle) 和Pentaho Business Intelligence (Kibana)实现大数据的加载、转换、分析和可视化。首先介绍了如何使用Kettle从多个数据源加载数据,然后介绍了如何使用Kibana进行数据转换、分析和可视化。最后介绍了如何使用Kettle和Kibana进行大数据处理,包括数据转换、数据清洗、数据集成和数据可视化等。
etl-engine支持None和Kerberos认证方式,适合测试环境及企业应用中的认证场景。
提取,转换和加载(ETL)工具使组织能够跨不同的数据系统使其数据可访问,有意义且可用。通常,公司在了解尝试编码和构建内部解决方案的成本和复杂性时,首先意识到对ETL工具的需求。
ETL 工具已经使用了近五年,使组织能够持续分析、开发和处理数据,数家数据库管理、分析和商业智能领域的资深企业供应商继续保持领先地位,同时,行业解决方案在 2022 年不断演进,以满足云和边缘数据处理需求。
本系列文章就是向大家介绍, 从 SQL Server 迁移到 MySQL 所面临的问题和我们的解决方案。
数据摄取是连接操作和分析世界的基本过程。对于将数据从原始操作环境中的多个来源传输到分析领域至关重要。
数据抽取是指从源数据源系统抽取需要的数据。实际应用中,数据源较多采用的是关系数据库。总体而言,数据抽取的常见方法有两大类,一是基于查询式的,一是基于日志的。
目前很多业务使用事务型数据库(MySQL、Oracle)做数据分析,把数据写入数据库,然后使用 SQL 进行有效信息提取,当数据规模很小的时候,这种方式确实是立竿见影的,但是当数据量级起来以后,会发现数据库吃不消了或者成本开销太大了,此时就需要把数据从事务型数据库里拷贝出来或者说剥离出来,装入一个分析型的数据库里。发现对于实时性和变更性的需求,目前只有 Kudu 一种组件能够满足需求,所以就产生了这样的一种场景:
领取专属 10元无门槛券
手把手带您无忧上云