首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

湖仓一体

做一名主要从事OLAP内核研发,对现有湖仓理解做个总结;欢迎批评/指正/讨论 1 为什么湖仓一体这么热: 湖、仓定义这里就不赘述了,大家可以去搜 我理解就是各类数据爆发的公司当前数据平台架构遇到了各类各样的问题...,寻求一个适配公司、平台的数据架构,一站式解决,但是大家对湖、仓本质的理解可能都不太一样,那又怎么谈湖仓一体呢。...我也一样,理解一定是片面的,我吸收的内容和我个人脑海呈现的画面也是不一样的,只能尽自己所能,表达清楚对湖仓一体的理解,和面对什么样的业务背景下,我们应该如何围绕我们的平台去做自己的湖仓一体。...从产品/应用角度出发,当前可落地方案: 1 从数据湖Adhoc场景,进行平台简单搭建 :您可以围绕HDFS + Iceberg + Trino + Doris 来快速搭建,HDFS存储,Iceberg...view,进行冷热数据的聚合;达到数据的一个统一视图,即仓上挂湖,冷热分层; 4 从真正意识上的湖仓一体,那就是云原生了: One Data:同时支持离线处理和在线分离,解决数据的一致性和实效性;即数据可以不开源

15421

湖仓一体详解

问题导读 1.什么是数据仓库、数据集市和数据湖? 2.湖仓一体化为什么诞生? 3.湖仓一体化是什么? 4.湖仓一体化的好处是什么?...那么接下来我们就来了解一下湖仓一体化的基本概念吧。 1.什么是数据仓库、数据集市和数据湖?...一种常见的解决方案是结合数据湖和数据仓库优势,建立湖仓一体化,进而解决了数据湖的局限性:直接在用于数据湖的低成本存储上实现与数据仓库中类似的数据结构和数据管理功能。...是否能有一种方案同时兼顾数据湖的灵活性和云数据仓库的成长性,将二者有效结合起来为用户实现更低的总体拥有成本?那么湖仓一体化就是答案! 3.湖仓一体化是什么?...4.湖仓一体化的好处是什么? 湖仓一体能发挥出数据湖的灵活性与生态丰富性,以及数据仓库的成长性与企业级能力。

4.1K21
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据湖与湖仓一体架构实践

    五、汽车之家湖仓一体架构实践案例分享 以下文字来源DataFunTalk,介绍了如何基于Apache Iceberg构建湖仓一体架构,将数据可见性提升至分钟级;从多维分析的角度来探讨引入Apache Iceberg...02 基于 Iceberg 的湖仓一体架构实践 湖仓一体的意义就是说我不需要看见湖和仓,数据有着打通的元数据的格式,它可以自由的流动,也可以对接上层多样化的计算生态。 ——贾扬清 1....流批一体: 在流批一体的理念下,Flink 的优势会逐渐体现出来。 12....总结 通过对湖仓一体、流批融合的探索,我们分别做了总结。 湖仓一体 Iceberg 支持 Hive Metastore; 总体使用上与 Hive 表类似:相同数据格式、相同的计算引擎。...架构收益 - 准实时数仓 上方也提到了,我们支持准实时的入仓和分析,相当于是为后续的准实时数仓建设提供了基础的架构验证。准实时数仓的优势是一次开发、口径统一、统一存储,是真正的批流一体。

    2.5K32

    湖仓一体:基于Iceberg的湖仓一体架构在B站的实践

    本文主要介绍为了应对以上挑战,我们在湖仓一体方向上的一些探索和实践。 Why?为什么需要湖仓一体 在讨论这个问题前,我们可能首先要明确两个概念:什么是数据湖?什么是数据仓库?...湖仓一体是近两年大数据一个非常热门的方向,如何在同一套技术架构上同时保持湖的灵活性和仓的高效性是其中的关键。...在开源社区领域,Iceberg、Hudi、DeltaLake等项目的出现也为在SQL on Hadoop的数据湖技术方案上实现湖仓一体提供了基础的技术储备。...B站的湖仓一体实践 对于B站的湖仓一体架构,我们想要解决的问题主要有两个:一是鉴于从Hive表出仓到外部系统(ClickHouse、HBase、ES等)带来的复杂性和存储开发等额外代价,尽量减少这种场景出仓的必要性...我们基于Iceberg构建了我们的湖仓一体架构,在具体介绍B站的湖仓一体架构之前,我觉得有必要先讨论清楚两个问题,为什么Iceberg可以构建湖仓一体架构,以及我们为什么选择Iceberg?

    85210

    别说你懂湖仓一体

    为此,这篇文章我们将主要分析: 1、数据仓、数据湖、湖仓一体究竟是什么? 2、架构演进,为什么说湖仓一体代表了未来? 3、现在是布局湖仓一体的好时机吗?...01:数据湖+数据仓≠湖仓一体 在湖仓一体出现之前,数据仓库和数据湖是被人们讨论最多的话题。 正式切入主题前,先跟大家科普一个概念,即大数据的工作流程是怎样的?...这里需要注意的是,“湖仓一体”并不等同于“数据湖”+“数据仓”,这是一个极大的误区,现在很多公司经常会同时搭建数仓、数据湖两种存储架构,一个大的数仓拖着多个小的数据湖,这并不意味着这家公司拥有了湖仓一体的能力...一个具有说服力的例证是,现阶段,国内外各大云厂商均陆续推出了自己的“湖仓一体”技术方案,比如亚马逊云科技的Redshift Spectrum、微软的Azure Databricks、华为云的Fusion...以国内数字化企业服务领域成长最快的独角兽滴普科技为例,依托新一代湖仓一体、流批一体的数据分析基础平台FastData,基于对先进制造、生物医药、消费流通等行业的深度洞察,滴普科技从实际场景切入,为客户提供了一站式的数字化解决方案

    61130

    数据湖仓一体的好处

    其次,您可以订阅数据湖仓服务,例如软件即服务 (SaaS)。 本文将深入探讨这两种类型的数据湖仓部署的特征,介绍 Cloudera 新的一体化湖仓产品 CDP One 的优势。...PaaS 数据湖仓 平台即服务 (PaaS) 数据湖仓是在您的云帐户中配置的数据湖仓的虚拟化部署。Cloudera 数据平台 (CDP) 公共云是 PaaS 数据湖仓的一个示例。...SaaS 数据湖仓 软件即服务 (SaaS) 数据湖仓部署是作为服务提供的交钥匙解决方案。例如,最近发布的 CDP One数据湖仓一体化是一种在云中运行的 SaaS 产品(亚马逊网络服务)。...数据湖仓一体的好处 运营可用于生产的数据湖仓可能具有挑战性。挑战包括部署和维护数据平台以及管理云计算成本。...CDP One 是一种一体化数据湖仓软件即服务 (SaaS) 产品,可对任何类型的数据进行快速简便的自助分析和探索性数据科学。

    73420

    湖仓一体,技术“缝合怪”?

    因此,湖仓一体化应运而生,旨在将数据仓库的结构化分析能力与数据湖的存储灵活性无缝结合,为企业提供一个综合的数据管理方案。 接下来,我们就湖仓一体进行更深入的分析。...随着技术的不断发展,我们预计湖仓一体化将在未来的企业数据战略中扮演越来越重要的角色。 具体怎么实现湖仓一体? 既然湖仓一体这么好,那么,应该怎么样来实现湖仓一体呢?...当然,湖仓一体的技术创新才刚刚开始,未来还有很长的路要走。 展望未来,湖仓一体化预计将在多个维度实现技术革新和进步。...同时,云计算的广泛应用将促进湖仓一体化方案在云原生和多云环境中的适应性,增强其灵活性和扩展性。 此外,用户友好性和无缝集成,将成为湖仓一体化解决方案的关键特征。...总的来说,湖仓一体化的未来发展将是技术创新和业务需求相结合的结果,旨在为企业提供更智能、更安全、更高效的数据管理和分析解决方案,从而在数据驱动的新时代中占据先机。 文:一蓑烟雨 / 数据猿

    39010

    Flink + Hudi,构架仓湖一体化解决方案

    此过程不用执行扫描整个源表的查询 Hudi的优势 •HDFS中的可伸缩性限制•Hadoop中数据的快速呈现•支持对于现有数据的更新和删除•快速的ETL和建模 以上内容主要引用于:《Apache Hudi 详解》 新架构与湖仓一体...通过湖仓一体、流批一体,准实时场景下做到了:数据同源、同计算引擎、同存储、同计算口径。...实时数仓的每一层结果数据会准实时的落一份到离线数仓,通过这种方式做到程序一次开发、指标口径统一,数据统一。...本节内容,引用自:《37 手游基于 Flink CDC + Hudi 湖仓一体方案实践》 最佳实践 版本搭配 版本选择,这个问题可能会成为困扰大家的第一个绊脚石,下面是hudi中文社区推荐的版本适配:...Chan 的提点,可能是 checkpoint的问题,于是做了设置 set execution.checkpointing.interval=10sec; 终于正常了 致此,Flink + Hudi 仓湖一体化方案的原型构建完成

    1.7K10

    数据无界、湖仓无界,Apache Doris 湖仓一体典型场景实战指南(下篇)

    上篇文章已介绍了 Apache Doris 湖仓一体完整方案,本文将聚焦典型应用场景,进一步深入,帮助读者更好地理解和应用 Apache Doris 湖仓一体。...在数据驱动决策的时代,湖仓一体架构以统一存储、统一计算、统一管理的创新形式,补齐了传统数据仓库和数据湖的短板,逐步成为企业大数据解决方案新的标准。...在上一篇文章中,全面介绍了湖仓一体演进历程以及 Apache Doris 湖仓一体解决方案,具体查阅:(上篇)从 0 到 1 构建湖仓体系, Apache Doris 湖仓一体解决方案全面解读。...本文将进一步深入,聚焦于 湖仓分析加速、多源联邦分析、湖仓数据处理 这三个典型场景,分享 Apache Doris 湖仓一体方案的最佳实践。...同时,我们也将结合实际场景,提供详细的使用指南,帮助读者更好地理解和应用 Apache Doris 的湖仓一体方案。

    10310

    7000字,详解仓湖一体架构!

    一种常见的解决方案是结合数据湖和数据仓库优势,建立湖仓一体化,进而解决了数据湖的局限性:直接在用于数据湖的低成本存储上实现与数据仓库中类似的数据结构和数据管理功能。...是否能有一种方案同时兼顾数据湖的灵活性和云数据仓库的成长性,将二者有效结合起来为用户实现更低的总体拥有成本?那么湖仓一体化就是答案! 04 什么是湖仓一体化?...如果企业觉得没必要在基础设施上投很多资源,而是要把更多资源放在业务上,那选一个更偏全托管版的湖仓一体解决方案更有价值。...如果企业选择全托管的湖仓一体解决方案,则成本主要来自于对当前数据,比如数仓迁移、数据整理等一次性开支,一旦这部分工作做完,后续在数据治理上形成正循环,整体成本不会太高。...现在是采用湖仓一体的好时机吗? Q:现在大多数企业都还没有用到湖仓一体的新架构,他们要么选择了数据湖方案,要么选择了数仓方案。湖仓一体作为一个新兴架构,很多企业目前还在早期探索阶段。

    4K30

    字节跳动基于 Apache Hudi 的湖仓一体方案及应用实践

    本文对目前主流数仓架构及数据湖方案的不足之处进行分析,介绍了字节内部基于实时/离线数据存储问题提出的的湖仓一体方案的设计思路,并分享该方案在实际业务场景中的应用情况。...最后还会为大家分享 LAS 团队对湖仓一体架构的未来规划。.../ 湖仓一体诉求 / 批流统一的湖仓一体存储需要满足更多的诉求,相匹配的就需要具备更强硬的核心能力,包括批式/流式读写能力与支持多种引擎的集成能力:批式读写提供不低于 Hive 表的吞吐,提供分区并发更新能力...我们针对以上需求,提出了更加高效的湖仓一体服务方案。接下来将从整体架构、数据分布、数据模型、数据读写以及 BTS 架构这 5 个方面,向大家介绍该方案的设计思路。...通过将实时数仓中埋点 DWD 层数据的存储方式改成 Hudi 湖仓一体表,将表提供给离线数仓使用,此时收益体现在离线数仓的埋点 DWD 层数据不再需要额外投入计算和存储资源,此外,还能提升数据就绪时间。

    1.6K50

    快手:从 Clickhouse 到 Apache Doris,实现湖仓分离向湖仓一体架构升级

    通过引入 Apache Doris 湖仓一体能力,替换了 Clickhouse ,升级为湖仓一体架构,并结合 Doris 的物化视图改写能力和自动物化服务,实现高性能的数据查询以及灵活的数据治理。...,逐步形成了湖仓一体解决方案:极致分析性能、助力湖仓查询加速 : 借助强大的分布式 SQL 查询引擎,Apache Doris 对 Parquet、ORC 等开发格式进行了深度适配。...基于 Apache Doris 的湖仓一体架构快手基于 Apache Doris 升级为湖仓一体分析平台,新架构如图所示:从下至上,主要分为以下几个层级:数据加工层:数据源数据同步到数据湖仓(Hive/...结束语引入 Apache Doris,使快手成功从湖仓分离架构升级到湖仓一体架构。...后续,快手将会进一步探索 Doris 在湖仓一体下的应用实践。

    22110

    字节跳动基于 Apache Hudi 的湖仓一体方案及应用实践

    / 湖仓一体诉求 / 批流统一的湖仓一体存储需要满足更多的诉求,相匹配的就需要具备更强硬的核心能力,包括批式/流式读写能力与支持多种引擎的集成能力:批式读写提供不低于 Hive 表的吞吐,提供分区并发更新能力...我们针对以上需求,提出了更加高效的湖仓一体服务方案。接下来将从整体架构、数据分布、数据模型、数据读写以及 BTS 架构这 5 个方面,向大家介绍该方案的设计思路。...湖仓一体存储在不同场景下应用时展现出了不同的亮点,下面我们介绍三个经典场景:流式数据计算、实时多维分析、流批数据复用,以及在这些应用案例中可达成的收益。...使用 Hudi 的湖仓一体表做改造之后,首先不再需要 ClickHouse 组件,且 Hudi 表的存储成本非常低,可以全量存储,最终通过 Presto 引擎对外提供查询能力。...通过将实时数仓中埋点 DWD 层数据的存储方式改成 Hudi 湖仓一体表,将表提供给离线数仓使用,此时收益体现在离线数仓的埋点 DWD 层数据不再需要额外投入计算和存储资源,此外,还能提升数据就绪时间。

    74730

    万字详解大数据架构新概念

    /EMR DataLake的湖仓一体方案做一介绍。...我们将在下一章详细介绍阿里云湖仓一体方案如何解决这三个问题。...06 阿里云湖仓一体方案 6.1 整体架构 阿里云MaxCompute在原有的数据仓库架构上,融合了开源数据湖和云上数据湖,最终实现了湖仓一体化的整体架构(图11)。...与此同时,阿里云EMR数据湖解决方案也将推出Data Lake Formation,MaxCompute湖仓一体方案也会支持对该数据湖中的统一元数据服务的一键映射能力。...新浪微博业务痛点示意 解决方案 为了解决上述的痛点问题,阿里云产品团队和微博机器学习平台团队联合共建湖仓一体新技术,打通了阿里巴巴MaxCompute云数仓和EMR Hadoop数据湖,构建了一个跨湖和仓的

    56820

    数据湖VS数据仓库?湖仓一体了解一下

    /EMR DataLake的湖仓一体方案做一介绍。...,系统负责自动caching/moving,系统可以根据自动的规则决定哪些数据放在数仓,哪些保留在数据湖,进而形成一体化 我们将在下一章详细介绍阿里云湖仓一体方案如何解决这三个问题。...六、阿里云湖仓一体方案 1. 整体架构 阿里云MaxCompute在原有的数据仓库架构上,融合了开源数据湖和云上数据湖,最终实现了湖仓一体化的整体架构(图11)。...与此同时,阿里云EMR数据湖解决方案也将推出Data Lake Formation,MaxCompute湖仓一体方案也会支持对该数据湖中的统一元数据服务的一键映射能力。...解决方案 为了解决上述的痛点问题,阿里云产品团队和微博机器学习平台团队联合共建湖仓一体新技术,打通了阿里巴巴MaxCompute云数仓和EMR Hadoop数据湖,构建了一个跨湖和仓的AI计算中台。

    3K10

    农业银行湖仓一体实时数仓建设探索实践

    为此,可通过建设实时数仓解决上述问题,实时数仓在离线数仓基础上进一步满足时效性的要求,依托流批一体、湖仓一体、云计算等技术,兼具时效性和灵活性优势,可作为金融业实时数据的生产、存储和使用平台。...同时,随着Hudi、Iceberg、Delta Lake等数据湖技术发展,依托数据湖底座的湖仓一体实时数仓建设正在兴起,对推进企业数字化转型具有重要价值: • 一是弥补现有架构的不足,湖仓一体实时数仓弥补了传统数仓对于数据实时处理能力的不足...• 三是提升企业级数据分析整合能力,湖仓一体实时数仓打破了数据湖与数据仓库割裂的体系,将数据湖的灵活性、数据多样性以及丰富的生态与数据仓库的企业级数据分析能力进行了融合。...实时数仓建设关键技术 3.1 实时数据入湖 实时数据入湖是湖仓一体实时数仓数据模型建设的基础,与流计算模式下“即用即弃”的数据处理策略不同,湖仓一体实时数仓借助Hudi数据湖存储引擎对实时流数据进行摄入存储...未来展望 湖仓一体实时数仓将数据湖的灵活性、数据多样性、丰富生态与数据仓库的企业级数据分析能力进行了融合,对实时数据模型建设具有重要价值。

    1.5K40

    基于湖仓一体构建数据中台架构

    数据仓库存储结构化的数据,适用于快速的BI和决策支撑,而数据湖可以存储任何格式的数据,往往通过挖掘能够发挥出数据的更大作为,因此在一些场景上二者的并存可以给企业带来更多收益。...湖仓一体,又被称为Lake House,其出发点是通过数据仓库和数据湖的打通和融合,让数据流动起来,减少重复建设。...Lake House架构最重要的一点,是实现数据仓库和数据湖的数据/元数据无缝打通和自由流动。...湖里的“显性价值”数据可以流到仓里,甚至可以直接被数仓使用;而仓里的“隐性价值”数据,也可以流到湖里,低成本长久保存,供未来的数据挖掘使用。...湖仓一体技术借助海量、实时、多模的数据处理能力,实现全量数据价值的持续释放,正成为企业数字化转型过程中的备受关注焦点。

    94310

    湖仓一体架构构建与平台应用实践

    数据湖适合存储非结构化的、信息密度低的、未经清洗的数据。例如生产中我们获取到的日志信息、长文本信息等都可以直接放到数据湖中。 曾经有一段时间,大家对于大数据的存储形式分裂为了两派。...不断询问是选择数据湖,还是选择数据仓库? 选择数据湖,才能拥有数据的多样与灵活,有利于将不同的数据组合在一起,发现新的规律。...湖仓一体,即打通数据仓库和数据湖两套体系,让数据和计算在湖和仓之间自由流动,从而构建一个完整的有机的大数据技术生态体系。...下面这份PPT材料来自DAMA中国,专题分享活动《湖仓一体,构建企业数字化新基座》,作者数据科学家毛亮坚老师,主要介绍了大数据平台架构演进、详细阐述湖仓一体架构构建与探索思路、湖仓一体化平台应用实践案例...、最后提出了湖仓一体化平台未来发展趋势,推荐给大家阅读。

    1.2K10
    领券