分布式数据库已经流行好多年,产品非常众多,其中分布式数据库中间件使用场景最广。本文主要是总结如何基于分布式数据库中间件做数据库架构设计,以充分发挥它的分布式能力。各个中间件产品功能核心原理相同,细节上有些区别。这里仅以阿里云的DRDS为例分析,在产品架构、功能、成熟度和市场占有率上,它都比同行产品有优势。
主从模式对于写少读多的场景确实非常大的优势,但是总会写操作达到瓶颈的时候,导致性能提不上去。
以支付宝用户为例,8亿;微信用户更是10亿。订单表更夸张,比如美团外卖,每天都是几千万的订单。淘宝的历史订单总量应该百亿,甚至千亿级别,这些海量数据远不是一张表能Hold住的。事实上MySQL单表可以存储10亿级数据,只是这时候性能比较差,业界公认MySQL单表容量在1KW以下是最佳状态,因为这时它的BTREE索引树高在3~5之间。
卖羊肉串首先就得有羊肉,于是我就联系了很多养殖场,我又是一个比较负责任的人,为了保证羊肉的质量,我就去考察了一家又一家养殖场,同时我也是个“小气”的人,所以我考察过程中,和对方谈判、比价,最终选了一个养殖场作为我的羊肉供应商,为我提供羊肉。
内容为慕课网的《高并发 高性能 高可用 Mysql 实战》视频的学习笔记内容和个人整理扩展之后的笔记,这一节讲述三高架构的另外两个部分切换和扩展,扩展指的是分库分表减轻数据库的压力,同时因为分库分表需要针对节点宕机问题引入了一些优化手段,而切换部分就是讲述节点宕机的切换问题的,最后我们结合复制的主从切换讲述如何搭建一个三高的架构。
MySQL Fabric具有分片功能,在同一个分片内又可以含有多个数据库,并且由Fabric自动挑选一个适合的作为主数据库,部署成本较高,另外需要应用端来适配改造。
作者:[美]威廉·肯尼迪(William Kennedy)布赖恩·克特森(Brian
https://www.cnblogs.com/grefr/p/6087942.html#top
首先采用Mysql存储千亿级的数据,确实是一项非常大的挑战。Mysql单表确实可以存储10亿级的数据,只是这个时候性能非常差,项目中大量的实验证明,Mysql单表容量在500万左右,性能处于最佳状态。
曾几何时,“并发高就分库,数据大就分表”已经成了处理 MySQL 数据增长问题的圣经。
我们都知道,随着业务量的增长,数据量也会随之增加,这个时候就需要关注业务大表,因为大表会影响查询性能,DDL变更时间很长,影响业务的可用性,同时导致从库延迟很大,如果业务做了读写分离,导致用户重复操作产生脏数据,例如重复下单。
首先数据库技术发展的基础还是在业务推动的背景下,能够实现相关的技术保障。业务需求的提升必然会在数据量,访问量等方面有更高的要求,而映射到数据库层面就不是简单的扩容和添加资源了,我们有时候更需要弹性,需要快速实现,需要更高的性能。这些都是摆在我们面前的问题,而不仅仅是DBA团队。 所以早期的很多数据库,从一主一从,一主多从的架构,逐步演变到了读写分离,分库分表,然后就是分布式。而同时从很多层面来说,行业内的方案真是百花齐放,记得前几天还和同事聊,说如果对比一下Oracle和MySQL,
网上对这些数据库介绍有些误导,流传各种说法,比如:流传OB基于MySQL、GaussDB 200/300 和openGauss有啥区别,没办法谁让当前国产数据库太多...
在星爷的《大话西游》中有一句非常出名的台词:“曾经有一份真挚的感情摆在我的面前我没有珍惜,等我失去的时候才追悔莫及,人间最痛苦的事莫过于此,如果上天能给我一次再来一次的机会,我会对哪个女孩说三个字:我爱你,如果非要在这份爱上加一个期限,我希望是一万年!”在我们开发人员的眼中,这个感情就和我们数据库中的数据一样,我们多希望他一万年都不改变,但是往往事与愿违,随着公司的不断发展,业务的不断变更,我们对数据的要求也在不断的变化,大概有下面的几种情况:
第一次重构是重构一个c#版本的彩票算奖系统。当时的算奖系统在开奖后,算奖经常超时,导致用户经常投诉。接到重构的任务,既兴奋又紧张,花了两天时间,除了吃饭睡觉,都在撸代码。重构效果也很明显,算奖耗时从原来的1个小时减少到10分钟。
《MySQL冲冲冲》是由 IMG 社区和爱可生开源社区联合举办的一款专门针对 MySQL 技术话题的节目,以下是第五期的直播内容。
原文:http://www.enmotech.com/web/detail/1/739/1.html
墨墨导读:本文以一个实际的项目应用为例,层层向大家剖析如何进行数据库的优化。项目背景是企业级的统一消息处理平台,客户数据在5千万加,每分钟处理消息流水1千万,每天消息流水1亿左右。 移动互联网时代,海量的用户数据每天都在产生,基于用户使用数据等这样的分析,都需要依靠数据统计和分析,当数据量小时,数据库方面的优化显得不太重要,一旦数据量越来越大,系统响应会变慢,TPS直线下降,直至服务不可用。
欢迎留言,说出你常用的技术 技术选型 ---- 网关:Nginx、Kong、Zuul 缓存:Redis、MemCached、OsCache、EhCache 搜索:ElasticSearch、Solr 熔断:Hystrix ---- 负载均衡:DNS、F5、LVS、Nginx、OpenResty、HAproxy 注册中心:Eureka、Zookeeper、Redis、Etcd、Consul 认证鉴权:JWT 消费队列:RabbitMQ、ZeroMQ、Redis、ActiveMQ、Kafka ---- 日志收
最近与同行科技交流,经常被问到分库分表与分布式数据库如何选择,网上也有很多关于中间件+传统关系数据库(分库分表)与NewSQL分布式数据库的文章,但有些观点与判断是我觉得是偏激的,脱离环境去评价方案好坏其实有失公允。
互联网当下的数据库拆分过程基本遵循的顺序是:垂直拆分、读写分离、分库分表(水平拆分)。每个拆分过程都能解决业务上的一些问题,但同时也面临了一些挑战。
导读:本文详细介绍了中间件,主要从数据库拆分过程及挑战、主流数据库中间件设计方案、读写分离核心要点、分库分表核心要点展开说明。
之前做过一个项目,数据库存储采用的是mysql。当时面临着业务指数级的增长,存储容量不足。当时采用的措施是
01 高可用 负载均衡(负载均衡算法) 反向代理 服务隔离 服务限流 服务降级(自动优雅降级) 失效转移 超时重试(代理超时、容器超时、前端超时、中间件超时、数据库超时、NoSql超时) 回滚机制(上
ORACLE数据库既能跑OLTP业务,也能跑OLAP业务,能力是商业数据库中数一数二的。支持IBM小机和x86 PC服务器,支持多种OS。同时有多种数据库架构方案供选择,成本收益风险也各不相同。
读写分离与分库分表,分布式事务 MySql存储引擎,建表规范,事务级别,sql优化,读写分离思想等。 了解过读写分离吗? 你说读的时候读从库,现在假设有一张表User做了读写分离,然后有个线程在一个事务范围内对User表先做了写的处理,然后又做了读的处理,这时候数据还没同步到从库,怎么保证读的时候能读到最新的数据呢? 你如何保证系统的稳定性? 答:分布式的链路一般都很长,所以我们首先通过全链路压测,分析整个链路,到底是哪个节点出现瓶颈。如果是数据层出现瓶颈,那么可以考虑加缓存,读写分离等降低数据库压力,如
对于分库分表来说,主要是面对以下问题: 选择一个数据库中间件,调研、学习、测试; 设计你的分库分表的一个方案,你要分成多少个库,每个库分成多少个表,比如 3 个库,每个库 4 个表; 基于选择好的数据库中间件,以及在测试环境建立好的分库分表的环境,然后测试一下能否正常进行分库分表的读写; 完成单库单表到分库分表的迁移,双写方案; 线上系统开始基于分库分表对外提供服务; 扩容了,扩容成 6 个库,每个库需要 12 个表,你怎么来增加更多库和表呢? 这个是你必须面对的一个事儿,就是你已经弄好分库分表方案了,然后一堆库和表都建好了,基于分库分表中间件的代码开发啥的都好了,测试都 ok 了,数据能均匀分布到各个库和各个表里去,而且接着你还通过双写的方案咔嚓一下上了系统,已经直接基于分库分表方案在搞了。 那么现在问题来了,你现在这些库和表又支撑不住了,要继续扩容咋办?这个可能就是说你的每个库的容量又快满了,或者是你的表数据量又太大了,也可能是你每个库的写并发太高了,你得继续扩容。这都是玩儿分库分表线上必须经历的事儿。
一、数据库瓶颈 1、IO瓶颈 2、CPU瓶颈 二、分库分表 1、水平分库 2、水平分表 3、垂直分库 4、垂直分表 三、分库分表工具 四、分库分表步骤 五、分库分表问题 1、非partition key的查询问题(水平分库分表,拆分策略为常用的hash法) 2、非partition key跨库跨表分页查询问题(水平分库分表,拆分策略为常用的hash法) 3、扩容问题(水平分库分表,拆分策略为常用的hash法) 六、分库分表总结 七、分库分表示例
不管是IO瓶颈,还是CPU瓶颈,最终都会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载活跃连接数的阈值。在业务Service来看就是,可用数据库连接少甚至无连接可用。接下来就可以想象了吧(并发量、吞吐量、崩溃)。
现在有一个未分库分表的系统,未来要分库分表,如何设计才可以让系统从未分库分表动态切换到分库分表上?
在很多小型应用中都没真正使用分库分表,但是说起来并不陌生,因为我们在面试中经常会被问到,今天我们从从以下几个方面来聊聊分库分表:「是什么?解决什么?怎么做?为什么要这么做?即:」
在对诸如订单、交易、支付等实时在线业务系统的研发、维护过程中,随着业务量的快速增长,我们经常会遇到由于关系型数据库(如:MySql)单表数据量增长过大而引发的线上事故;虽然这些事故多数时候是由于不合理的慢SQL而引起的系统雪崩,但有时也会出现由于数据库热点块IO争用而引发的系统性性能下降。总之,单表数据量的无限增长总是会在这样或那样的情况下增加系统的不稳定性因素。
随着 DT 时代的来临,数据对于企业经营决策的价值日益凸显,而企业在进行互联网+转型的过程中,如何让数据架构平滑迁移到大数据平台,对于传统业务的转型升级至关重要。企业 IT 部门该如何进行 PB 级别大数据平台的迁移规划呢,请看云智慧运维总监张克琛带来的经验分享。 提到 PB 级别的大数据解决方案市面上有很多,比较火的有 Hadoop、Spark、Kafka 等等,如果是一个新上线的系统,相信大家都能找到适合自己的方案。但“大数据”在 09 年才逐渐成为互联网信息技术的流行词汇,一个较老的系统如何平滑迁移到
一、分库分表类型 1、单库单表 所有数据都放在一个库,一张表。 2、单库多表 数据在一个库,单表水平切分多张表。 3、多库多表 数据库水平切分,表也水平切分。 二、分库分表查询 通过分库分表规则查找到对应的表和库的过程: 如分库分表的规则是acc_id mod 4的方式,当用户新注册了一个账号,账号id的123,我们可以通过acc_id mod 4的方式确定此账号应该保存到Acc_0003表中。当用户123登录的时候,我们通过123 mod 4后确定记录在Acc_0003中。 三、分库分表的问题 分库分表
1、非partition key的查询问题(水平分库分表,拆分策略为常用的hash法)
类似订单表,用户表这种未来规模上亿甚至上十亿百亿的海量数据表,在项目初期为了快速上线,一般只是单表设计,不需要考虑分库分表。随着业务的发展,单表容量超过千万甚至达到亿级别以上,这时候就需要考虑分库分表这个问题了,而不停机分库分表迁移,这应该是分库分表最基本的需求,毕竟互联网项目不可能挂个广告牌"今晚10:00~次日10:00系统停机维护",这得多low呀,以后跳槽面试,你跟面试官说这个迁移方案,面试官怎么想呀?
背景 2016年Q3季度初,在美团外卖上单2.0项目上线后,商家和商品数量急速增长,预估商品库的容量和写峰值QPS会很快遇到巨大压力。随之而来也会影响线上服务的查询性能、DB(数据库,以下统一称DB)主从延迟、表变更困难等一系列问题。 要解决上面所说的问题,通常有两种方案。第一种方案是直接对现有的商品库进行垂直拆分,可以缓解目前写峰值QPS过大、DB主从延迟的问题。第二种方案是对现有的商品库大表进行分库分表,从根本上解决现有问题。方案一实施起来周期较短,但只能解决一时之痛,由此可见,分库分表是必然的。 在确
根据容量(当前容量和增长量)评估分库或分表个数 -> 选key(均匀)-> 分表规则(hash或range等)-> 执行(一般双写)-> 扩容问题(尽量减少数据的移动)。
高并发下数据库的一种优化方案:读写分离。就是一老主从复制的技术使得数据库实现数据复制多份,增加抵抗大量并发的得写能力。提升数据库的查询性能。以提高数据的安全性,
如果业务量剧增,数据库可能会出现性能瓶颈,这时候我们就需要考虑拆分数据库。从这几方面来看:
之前有不少刚入坑 Java 的粉丝留言,想系统的学习一下分库分表相关技术,可我一直没下定决心搞,眼下赶上公司项目在使用 sharding-jdbc 对现有 MySQL 架构做分库分表的改造,所以借此机会出一系分库分表落地实践的文章,也算是自己对架构学习的一个总结。
当数据库的数据量过大,大到一定的程度,我们就可以进行分库分表。那么基于什么原则,什么方法进行拆分,这就是本篇所要讲的。
作者:tayroctang,腾讯 PCG 后台开发工程师 本文从 5W1H 角度介绍了分库分表手段,其在解决如 IO 瓶颈、读写性能、物理存储瓶颈、内存瓶颈、单机故障影响面等问题的同时也带来如事务性、主键冲突、跨库 join、跨库聚合查询等问题。anyway,在综合业务场景考虑,正如缓存的使用一样,本着非必须勿使用原则。如数据库确实成为性能瓶颈时,在设计分库分表方案时也应充分考虑方案的扩展性,或者考虑采用成熟热门的分布式数据库解决方案,如 TiDB。 阅读此文你将了解: 什么是分库分表以及为什么分库分表 如
TiDB 作为分库分表方案的一个 “终结者”,获得了许多用户的青睐。在切换到 TiDB 之后,用户告别了分库分表查询和运维带来的复杂度。但是在从分库分表方案切换到 TiDB 的过程中,这个复杂度转移到了数据迁移流程里。TiDB DM 工具为用户提供了分库分表合并迁移功能,在数据迁移的过程中,支持将分表 DML 事件合并迁移,并一定程度支持上游分表进行 DDL 变更。
领取专属 10元无门槛券
手把手带您无忧上云