数据分析有一半以上的时间会花在对原始数据的整理及变换上,包括选取特定的分析变量、汇总并筛选满足条件的数据、排序、加工处理原始变量并生成新的变量、以及分组汇总数据等等。...带着这个问题,我们将首先使用dplyr包对给出的航班数据进行处理。...2.2 列名重命名 为了让列名简单易懂,可以使用rename函数,进行列名重命名。...PS.这里穿插一个好用的工具,“管道”,即通过使用操作符把数据集名作为开头, 然后依次对此数据进行多步操作。...通过管道的连接方式,让数据或表达式的传递更高效,使用向右操作符%>%,可以直接把数据传递给下一个函数调用或表达式。
2.3 tidyverse:用select_if筛选列 dplyr包中的select_if函数,在按条件筛选列时非常有用,并且还可以添加不同函数来修改列名。...例如:我想选择数值型变量,并修改列名添加前缀“numeric_”。...2.4 tidyverse:用where筛选列 对2.3的例子使用where实现相同操作: library(tidyverse) iris%>%rename_with(~ paste0("numeric...可以使用.before或.after指定列的确切位置。...或者:我想让Petal.Width作为最后一列: iris%>%relocate(Petal.Width, .after=last_col())%>%head() ?
() select()函数用于筛选有用的列,第一个参数还是数据库,第二个参数以及后面是需要的列名,列名有多种书写方式,可以使用冒号作为范围,也可以使用 stars_with,ends_with...另外,当想要把几个需要的列移到前面,可以配合使用 everythins()函数,将剩余的列添加到后面。...mtcars %>% dplyr::sample_n(10) mtcars %>% dplyr::sample_frac(0.2) 六、创建新变量 有时需要对已有变量进行重新计算,例如计算几列的和...,会某一列取对数,这样将生成新的变量,这个时候可以使用 mutate 函数。...大家互动交流可以前去论坛,地址在下面,复制去浏览器即可访问,弥补下公众号没有留言功能的缺憾。原地址暂未启用(bioinfoer.com)。
1)安装、加载dplyr包、准备数据 install.packages("dplyr") #加载dplyr包 使用dplyr包处理数据前,建议先将数据集转换为tbl对象。...data(iris) #本文使用iris示例数据集。 2)数据记录筛选(行筛选) filter函数:按指定条件筛选符合条件中逻辑判断要求的数据记录。...%in% c("setosa","virginica")) 3)变量筛选(列) select函数:可以通过指定列名选择指定的变量进行分析,得到的为选择的列。...arrange(iris,Sepal.Length) # 将数据按照Sepal.Length升序排序 5)变量变换/重构 mulate()函数可以数据拓展,也可以在保留原变量的基础上增加变量,进行数据处理...>%, 使用时把数据集名作为开头, 然后依次对此数据进行多步操作。
使用tidyverse进行简单的数据处理: 盘一盘Tidyverse| 筛行选列之select,玩转列操作 盘一盘Tidyverse| 只要你要只要我有-filter 筛选行 Tidyverse|数据列的分分合合...一 summarize汇总 汇总函数 summarise(),可以将数据框折叠成一行 ,多与group_by()结合使用 1.1 summarise完成指定变量的汇总 统计均值,标准差,最小值,个数和逻辑值...summarise_at配合vars,可以更灵活的筛选符合条件的列,然后进行汇总 iris %>% summarise_at(vars(ends_with("Length"),Petal.Width...dplyr 包时最常用的操作之一:分组摘要 2.1 按照Species分组,变量汇总 iris %>% group_by(Species) %>% summarise(avg_pet_len...is.na(x)) :返回非缺失值的梳理; n_distinct(x):返回 唯一值的数量。
x + y)2.select(),按列筛选,按名称选择变量(1)按列号筛选select(test,1)# 筛选test数据集的第一列iris %>% select(1:3)# 筛选iris数据集的第一到第三列...(2)按列名筛选select(test, Petal.Length, Petal.Width)iris %>% select(Species, Sepal.Length)3.filter()筛选行/返回具有匹配条件的行可以按照某分类变量的值进行数据筛选...arrange(test, Sepal.Length)#默认从小到大排序mtcars %>% arrange(cyl, disp)5.summarise():汇总,对数据进行汇总操作,结合group_by使用实用性强...1:管道操作 %>% (cmd/ctr + shift + M)向右传递test %>% group_by(Species) %>% summarise(mean(Sepal.Length), sd(...Sepal.Length))R中的管道操作符2:count统计某列的unique值count(test,Species)分类变量每个变量值的频数dplyr处理关系数据将2个表进行连接1.內连inner_join
mirrors.ustc.edu.cn/bioc/")对应中科大源当然可以换成其他地区的镜像包的安装install.packages("包")BiocManager::install("包“)包的加载以下两个都可以使用...mirrors.tuna.tsinghua.edu.cn/CRAN/"))options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/")install.packages("dplyr...")library(dplyr)dplyr 五个基本函数mutate()新增列mutate(test,new=Sepl.Lengh*Sepal.Width)select()按列筛选按列号筛选select...(test,1)按列名筛选select(test,Sepal.Length)筛选行filter()按某1列或者某几列对整个表格进行排序arrange()汇总sunnarise()dplyr的实用技能管道操作...%>% 该命令可以用ctrl+shift+M 可以将前一行输出的结果传递给后一行作为输入统计某列的值count()dplyr处理关系数据inner_join内连取交集left_jion左连full_join
对于即将合并的新列,需要使用引号;但对于想要合并的多个列名,可以不用使用引号。sep 参数设定多列合并后不同数据分隔使用的分割符。...按列号 select(test,1) select(test,c(1,5)) 按列名 如果想要用向量来存放希望筛选的列名,需要使用函数 one_of 来存放该向量。...其语法逻辑为,去掉指定的列后,筛选其他的列。因此我们可以对select 与everything 处理,先筛选某列,接着去掉该列后,对其他列取everything,便可以将先筛选的列顺序提到最前。...arrange(x2,Sepal.Length) 如果依靠变量的传递,每一步都需要将结果指定若干个中间变量,再将指定的这些中间变量,作为输入值传递给下一个值。...处理关系数据 即通过dplyr 包将表格进行连接。
Dplyr Join two tables join 函数用于根据指定的键将两个数据框连接起来,可以根据共同的变量将数据框进行合并,支持多种连接操作,如内连接、左连接、右连接和外连接等。...Dplyr Rename columns rename 函数用于重命名数据框中的变量名,能够快速修改变量的名称,使得数据的列名更符合用户的需求和习惯。...Dplyr Select keep or drop columns select 函数用于选择数据框中的特定列,可以保留感兴趣的变量,并且能够根据列名、位置或条件表达式进行灵活的变量选择操作。...Dplyr Filter keep rows that match a condition filter 函数用于根据条件筛选数据行,能够仅保留满足条件的观测,支持根据指定的条件表达式对数据框进行灵活的行筛选操作...Tidyr Pivot Wider from long pivot_wider 函数用于将长格式数据转换为宽格式数据,能够将数据框中的一列分成多个列,根据指定的列名进行展开,使得数据以更直观的宽格式形式呈现
2、按条件行筛选 从前用subset的方式进行筛选比较多, new=14,select=a:f) (1)单变量 现在data.table与dplyr from_dplyr =...在筛选列变量的数据,也可以与%in%集合运算联用(集合运算见博客:R语言︱集合运算)。...(2)多变量筛选,用&|等 from_dplyr = filter(tb,State=='CA' & Claim.Type!...="Hospice"] (3)还有一些复杂结构: dt[a=='B' & c2>3, b:=100] #其他结构 在dt数据集中,筛选a变量等于"B",c2变量大于3,同时将添加b变量,数值等于...%>%的功能是用于实现将一个函数的输出传递给下一个函数的第一个参数。注意这里的,传递给下一个函数的第一个参数,然后就不用写第一个参数了。在dplyr分组求和的过程中,还是挺有用的。
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!...= TRUE & is.na(gender) !...gender数目和比例筛选符合要求的研究datasets_tokeep % dplyr::select(study_name, gender) %>% dplyr::group_by...is.na(RE)) %>% dplyr::filter(FDR_Qvalue % dplyr::group_by(Species) %>% dplyr::mutate(RE_lower...is.na(RE)) %>% dplyr::filter(FDR_Qvalue % dplyr::group_by(Species) %>% dplyr::mutate(RE_lower
这里我们使用dplyr包操作2013年纽约市的航班起飞数据集(2013)。 准备 这部分我们聚焦于如何使用dplyr包,除ggplot2的另一个tidyverse核心成员。...根据值选择观察(记录),filter() 对行重新排序,arrange() 根据名字选择变量,select() 根据已知的变量创建新的变量,mutate() 将许多值塌缩为单个描述性汇总,summarize...所有的动词工作都非常相似: 第一个参数都是数据框 随后的参数描述了使用变量名(不加引号)对数据框做什么 结果是一个新的数据框 这些属性一起便利地将多个简单步骤串联起来得到一个复杂的操作(结果)。...dplyr从不修改输入数据,所以如果你想要保存数据,必须使用<-进行赋值: jan1 <- filter(flights, month == 1, day == 1) R要么输出结果,要么将结果保存到一个变量...x == y ## [1] NA # 我们不知道 如果你想确定一个值是不是缺失了,使用is.na(): is.na(x) ## [1] TRUE filter()仅仅会包含条件是TRUE的行,把是
") library(dplyr) 示例数据采用内置数据集iris的简化版 test <- iris[c(1:2,51:52,101:102),] 二、dplyr五个基础函数 1.mutate(),新增列...筛出以列名为Sepal.Length的一列 select(test, Petal.Length, Petal.Width)##筛出以列名为Petal.Length和 Petal.Width的两列 vars...> 5 )##在第一行代码的基础上增加一个筛选条件,要同时满足这两个筛选条件 filter(test, Species %in% c("setosa","versicolor"))##筛选条件是 Species...(test, Species),mean(Sepal.Length), sd(Sepal.Length)) 看,通过管道可以将test中的数据直接传递给group_by函数使用,也可以将分组后的species...数据传递给summarise函数使用 test %>% group_by(Species) %>% summarise(mean(Sepal.Length), sd(Sepal.Length
R解法 df[is.na(df$日期),] 55 缺失值处理 题目:输出每列缺失值具体行数 难度:⭐⭐⭐ 期望结果 列名:"代码", 第[327]行位置有缺失值 列名:"简称", 第[327, 328]...= 0){ res1 is.na(df[,i])) res2 <- paste(res1,collapse = ',') print(glue('列名:"{i}...5天 难度:⭐⭐ R解法 lag(df,5) 76 数据处理 题目:将数据向前移动5天 难度:⭐⭐ R解法 lead(df,5) 77 数据计算 题目:使用expending函数计算开盘价的移动窗口均值...)) %>% dplyr::rename(`0` = "seq(0, 99, 5)") 84 数据创建 题目:从NumPy数组创建DataFrame 难度:⭐ 备注 使用numpy生成20个指定分布...R语言解法 df2[seq(1,dim(df2)[1],20),] 104 数据处理 题目:将数据取消使用科学计数法 难度:⭐⭐ 输入 df = pd.DataFrame(np.random.random
#交集与补集: dplyr中提供了两个函数可以执行交集与补集操作: duplicated(mydata$B) #返回重复对象的布尔值 mydata[!...na.rm=TRUE/FALSE #移除缺失值 rm.na通常作为基础统计函数的参数使用,如mean,sum等 mean(mydata$A,na.rm=TRUE) sum(mydata$A,na.rm...complete.cases(mydata$A),]#使用该函数的布尔索引确定缺失值或者排除缺失值 ?...关于更为复杂的缺失值插补技术,因为涉及到一些比较深入的方法,这里暂且不呈现,仅对缺失值的描述和筛选做以上简单归总。...--------- Python: --------- #列表去重: set(将列表元组化过滤重复数据) M=[1,4,3,6,5,4,3,2,7,8] list(set(M)) #数据框的去重: import
上次推文,我们通过数字和字符进行了简单的行筛选,今天我们继续来探讨 filter()的进阶用法 今天我们使用 msleep 来进行演示filter()的用法,msleep 是一个关于哺乳动物睡眠的数据...如果我们想筛选 name,conservation 到 sleep_cycle 这几列,并剔除 conservation 为 NA 的行,可以通过is.na()来判断 msleep %>% select...dplyr 包还有几个功能强大的包,来支持我们跨列筛选 「filter_all」 现在有个需求,只要列值包含字母组合 Ca 我们就把这个观测值筛选出来,我们可以用any_vars() 结合str_detect...,字符型的变量中的值为空,而不管数值型的变量是否为空, 此时 filter_all 就不太好用了,filter_all(any_vars(is.na(.)))会将所有包含 NA 的列选出来,不符合我们的要求...更加丰富了 「filter_at」 filter_at()可以用来筛选给定变量中符合某条件的观测值,比如下面这个例子,我们想筛选出sleep_total和sleep_rem这两个变量值都大于5的 msleep
") 加载 library和require 使用一个R包需先安装再加载 library(dplyr)dplyr五个基础函数mutate(),新增列——mutate(test, new = Sepal.Length...*Sepal.Width)要修改的数据框的名称将创建的新变量的名称将分配给新变量的值select()按列筛选select(test,1)#筛选test中的第一列select(test,c(1,5))#筛选...test中的第一列和第五列select(test,Sepal.Length)#筛选test中名为Sepal.Length的一列按列名筛选select(test, Petal.Length, Petal.Width...)选择字符向量中的列,select中不能直接使用字符向量筛选,需要使用one_of函数vars % —— 相当于将左边的作为右边函数的第一个参数,快捷键: ctrl+shift+M(不管用——改为Ctrl+a) test %>% group_by(Species) %>
/tidyr 数据管理 2.1 filter 使用逻辑条件对行筛选。...dplyr 包的 distinct() 函数可以对数据框指定若干变 量,然后筛选出所有不同值,每组不同值仅保留一行。...按列号 select(test,1) select(test,c(1,5)) 按列名 如果想要用向量来存放希望筛选的列名,需要使用函数 one_of 来存放该向量。...对于待分离的对象(col),不必加上引号;但对于即将创建的新列(into),需要使用引号,由于是两列,这里使用向量创建。sep参数设定读取表格信息时以何符号作为分隔符。...对于即将合并的新列,需要使用引号;但对于想要合并的多个列名,可以不用使用引号。sep 参数设定多列合并后不同数据分隔使用的分割符。
")library(dplyr)示例数据直接使用内置数据集iris的简化版:test dplyr五个基础函数library(dplyr)创建一个示例数据框...data 使用mutate()函数创建新的变量data 筛选filter()筛选arrange()按列排序排序summarise():汇总管道操作 %>% (cmd/ctr + shift + M)inner_join(test1, test2..., by = "x")inner_join()函数和merge()函数都用于将两个数据框按照某些共同的列进行合并,但它们有一些区别:语法差异:inner_join()函数来自于dplyr包,其语法更加简洁明了...,也是用来合并两个数据框,by参数也是指定用于合并的列名。包依赖:inner_join()函数属于dplyr包,因此需要先加载dplyr包才能使用。
这两个部分将生信分析的绝大多数常用命令都讲到了,作为R语言入门是够用的,但是学海无涯,以此只是作为一个引子,想要进步还是要自己多学多练,举一反三才行。...a1 = read.csv("R11.csv", sep = ",", header = T) #读取R11.csv文件,header = T表示将数据的第一行作为标题 a2 = read.table(..."R11.txt", sep = "\t", header = T) #读取R11.txt文件,header = T表示将数据的第一行作为标题 ?...#数据筛选 a2[ a2$Sepal.Length >= 7, ] subset(a2, Sepal.Length >=7) dplyr::filter(a2, Sepal.Length >=7) #筛选...比如‘sex’变量有Fale,Female两种,可以只当做字符串,也可 作为属性变量。
领取专属 10元无门槛券
手把手带您无忧上云