数据集如果用于统计与绘图,需要满足一定的格式要求,(Wickham, 2014) 称之为 整洁数据 (tidy data),基本要求是每行一个观测,每列一个变量,每个单元格恰好有一个数据值。...,后续的参数是条件,这些条件是需要同时满足的,另外,条件中取 缺失值的观测自动放弃,这一点与直接在数据框的行下标中用逻辑下标有所不同,逻辑下标中有缺失值会在结果中 产生缺失值。...忽略最后一个即表示选择倒数第二个。 2.6 arrange 按照数据框里的某列或某几列,对所有行进行排序。可以使用 desc 产生倒序,或写入多个列使其按照多个列进行排序。...2.10 表格的拆分与合并 将同一列中的内容分为两列内容。或将两列内容合并为同一列内容。 首先还是可以创建一个数据框。...R 数据整理(六:根据分类新增列的种种方法 1.0) 其他函数 slice dplyr 包的函数 slice(.data, ...) 可以用来选择指定序号的行子集,正的序号表示保留,负的序号表示排除。
涉及编程的数据和代码都会放到 https://github.com/XSLiuLab/Workshop 推荐图书 《R for Data Science》[1] 《R 语言编程指南》 《R 实战》 其他推荐见...slice, filter, sample_n, sample_frac, top_n, distinct 列筛选 select 排序 arrange 行列增加/更新 基本的数学和比较逻辑运算符 +...:: cume_dist dense_rank min_rank ntile percent_rank row_number 其他 dplyr:: between case_when coalesce...is.na()) 位置 mean, meadian 逻辑值 mean, sum 位置 dplyr:: first last nth 排序 quantile min max 分布 IQR mad sd var...tibble tribble, enframe as_tibble, is_tibble 缺失值 drop_na fill replace_na 长转宽 pivot_wider, spread ?
如果其后加上参数(列名),则会针对该列进行去除缺失值。...忽略最后一个即表示选择倒数第二个。 everything 可以实现对列的自定义排序。其语法逻辑为,去掉指定的列后,筛选其他的列。...因此我们可以对select 与everything 处理,先筛选某列,接着去掉该列后,对其他列取everything,便可以将先筛选的列顺序提到最前。...arrange(x2,Sepal.Length) 如果依靠变量的传递,每一步都需要将结果指定若干个中间变量,再将指定的这些中间变量,作为输入值传递给下一个值。...(或通过group_by与mutate 自行添加索引) 进行separate 时,要注意特殊符号的用法,其可能存在正则用法,需要进行转义。 如果分隔出的结果存在0的话,会自动识别为NA。
使用mutate()添加新变量 除了选择已存在的列,另一个常见的操作是添加新的列。这就是mutate()函数的工作了。 mutate()函数通常将新增变量放在数据集的最后面。...这个操作会将分析单元从整个数据集转到单个的组别。然后,当你使用dplyr动词对分组的数据框进行操作时,它会自动进行分组计算。...,包含计数n()或者非缺失值计数sum(!...当你看到这种类型图时,过滤掉有很少数目的组别是很有用的,可以看到数据更多的模式和更少的极端值。这正是下面代码做的事情,它同时展示了整合dplyr与ggplot2的一种手动方式。...为了对非缺失值计数,使用sum(!is.na(x))。
函数用于对数据框按照指定变量进行排序,可以根据一个或多个变量对数据进行升序或降序排列,帮助用户重新整理数据框中的观测顺序。...Dplyr Mutate create, modify, and delete columns mutate 函数用于添加新变量或修改现有变量,能够基于已有数据创建新的变量列,支持对数据框进行实时的变量操作和修改...Dplyr Select keep or drop columns select 函数用于选择数据框中的特定列,可以保留感兴趣的变量,并且能够根据列名、位置或条件表达式进行灵活的变量选择操作。...Dplyr Slice select rows by position slice 函数用于按行数进行切片,能够从数据框中提取特定的行,支持根据行数或行号选择需要的行,也支持使用负数表示从末尾开始计算的行数...Tidyr Pivot Longer from wide pivot_longer 函数用于将宽格式数据转换为长格式数据,能够根据用户指定的列将数据框中的多个列整理成一对 “名-值” 对,便于进一步的分析和处理
同时,它指与因变量有线性相关并在探讨自变量与因变量关系时通过统计技术加以控制 的变量。常用的协变量包括因变量的前测分数、人口统计学指标以及与因变量明显不同的个人特征等。协变量应该属于控制变量的一种。...广义估计方程(generalized estimating equations,GEE)建立结果变量y与协变量Z之间(每个协变量内含有对应的自变量X)的函数关系建立y的方差与平均值之间的函数关系对y构建一个...区分混合线性模型中的随机效应和固定效应是一个重要的概念。固定效应是具有特定水平的变量,而随机效应捕捉了由于分组或聚类引起的变异性。比如下方正在探究尿蛋白对来自不同患者的GFR的影响。...固定效应:具有特定的水平或值需要进行研究的主要变量,如尿蛋白等随机效应:患者分层结构:尿蛋白嵌套在患者内模型方程:GFR = 尿蛋白 + 患者 + 误差解释:解释固定效应,以了解尿蛋白的变化如何与GFR...OddRatio:风险值,一般用于逻辑回归,可以通过对系数估计进行指数化来计算比值几率。比值几率表示单位预测变量变化时响应变量的几率的乘性变化。在本例中,不适合。
mutate中的任何内容都可以是新列(通过赋予mutate新的列名),或者可以替换当前列(通过保持相同的列名)。 最简单的选项之一是基于其他列中的值的计算。...就像第1部分中的select()函数一样,mutate()有变种: *mutate_all()将根据您的进一步说明改变所有列 *mutate_if()首先需要一个返回布尔值的函数来选择列。...如果确实如此,那么将对这些变量进行mutate指令。 *mutate_at()要求你在vars()参数中指定要进行变异的列。...Mutate全部列 mutate_all()版本是最容易理解的,在清理数据时非常漂亮。 您只需传递要在所有列中应用的操作(以函数的形式)。...如果要添加另一个数据框的信息,可以使用dplyr中的连接函数。
❝在近期使用 「dplyr」 进行多列选择性操作,如 mutate_at() 时,发现文档提示一系列的 「dplyr」 函数变体已经过期,看来后续要退休了,使用 across() 是它们的统一替代品,所以最近抽时间针对性的学习和翻译下...载入包: library(dplyr, warn.conflicts = FALSE) 基本用法 across() 有两个主要的参数: 第一个参数是 .cols ,它用来选择你想要操作的列。...x y #> #> 1 0 0.385 #> 2 0.333 1 #> 3 0.667 0 #> 4 1 0.903 查找所有没有变量缺失值的行..._at() 函数是 「dplyr」 中唯一你需要手动引用变量名的地方,这让它们比较奇怪且难以记忆。 为什么过了这么久才发现 across()?...我们可以使用没有外部名称作为将数据框列解包为单独列的约定。 你如何转移已经存在的代码?
x + y)2.select(),按列筛选,按名称选择变量(1)按列号筛选select(test,1)# 筛选test数据集的第一列iris %>% select(1:3)# 筛选iris数据集的第一到第三列...按列名筛选select(test, Petal.Length, Petal.Width)iris %>% select(Species, Sepal.Length)3.filter()筛选行/返回具有匹配条件的行可以按照某分类变量的值进行数据筛选...), sd(Sepal.Length))R中的管道操作符2:count统计某列的unique值count(test,Species)分类变量每个变量值的频数dplyr处理关系数据将2个表进行连接1.內连...,每列数值的类型必须相同;以"by"的列为标准,补齐列表,空值为"NA"4.半连接:返回能够与y表匹配的x表所有记录semi_join交集表中test1部分的列semi_join(x = test1,...y = test2, by = 'x')5.反连接:返回无法与y表匹配的x表的所记录anti_jointest1中去除交叉部分的列表anti_join(x = test2, y = test1, by
缺失值 5 dplyr包的下述五个函数用法 5.1 筛选: filter 5.2 排列: arrange 5.3 选择: select 5.4 变形: mutate 5.5 汇总: summarise...) 6.3 多列合并为一列:unit 6.4 将一列分离为多列:separat 正 文 先前已经讲过R语言生成测试数据、数据预处理和外部数据输入等内容,但这仅仅是第一步,我们还需要对数据集进行筛选、缺失值处理等操作...类似excel透视表反向操作 #gather(data, key, value, …, na.rm = FALSE, convert = FALSE) #data:需要被转换的宽形表 #key:将原数据框中的所有列赋给一个新变量...key #value:将原数据框中的所有值赋给一个新变量value #…:可以指定哪些列聚到同一列中 #na.rm:是否删除缺失值 widedata 变量值拓展为字段的变量 #value:需要分散的值 #fill:对于缺失值,可将fill的值赋值给被转型后的缺失值 stocks <- data.frame( time = as.Date(
library(nycflights13) library(tidyverse) dplyr最常用的5个函数: • 按值筛选观测(filter())。...• 对行进行重新排序(arrange())。 • 按名称选取变量(select())。 • 使用现有变量的函数创建新变量(mutate())。...• 将多个值总结为一个摘要统计量(summarize())。 函数的使用方法: (1) 第一个参数是一个数据框。 (2) 随后的参数使用变量名称(不带引号)描述了在数据框上进行的操作。...如果列名不只一个,那么就使用后面的列在前面排序的基础上继续排序 arrange(flights, year, month, day) 使用 desc() 可以按列进行降序排序: arrange(flights..., desc(arr_delay)) select 1.使用select()选择列 # 按名称选择列 select(flights, year, month, day) # 选择“year”和“day”
,是弱类型的,同时与data.frame有相同的语法,使用起来更方便。...:数据整理 dplyr包的下述五个函数用法 4.1 筛选: filter 4.2 排列: arrange 4.3 选择: select 4.4 变形: mutate 4.5 汇总: summarise...#key:将原数据框中的所有列赋给一个新变量key #value:将原数据框中的所有值赋给一个新变量value #…:可以指定哪些列聚到同一列中 #na.rm:是否删除缺失值 widedata 变量值拓展为字段的变量 #value:需要分散的值 #fill:对于缺失值,可将fill的值赋值给被转型后的缺失值 stocks <- data.frame( time = as.Date...:unit() #unite(data, col, …, sep = “_”, remove = TRUE) #data:为数据框 #col:被组合的新列名称 #…:指定哪些列需要被组合 #sep:组合列之间的连接符
") 加载 library和require 使用一个R包需先安装再加载 library(dplyr)dplyr五个基础函数mutate(),新增列——mutate(test, new = Sepal.Length...*Sepal.Width)要修改的数据框的名称将创建的新变量的名称将分配给新变量的值select()按列筛选select(test,1)#筛选test中的第一列select(test,c(1,5))#筛选...)选择字符向量中的列,select中不能直接使用字符向量筛选,需要使用one_of函数vars 的行arrange(),按某1列或某几列对整个表格进行排序arrange(test, Sepal.Length)#默认从小到大排序arrange(test, desc(Sepal.Length...) %>% summarise(mean(Sepal.Length), sd(Sepal.Length))count统计某列的unique值count(test,Species)dplyr处理关系数据
数据选取与简单操作: which 返回一个向量中指定元素的索引 which.max 返回最大元素的索引 which.min 返回最小元素的索引 sample 随机在向量中抽取元素 subset 根据条件选取元素...2、dplyr包 dplyr包的数据合并, 一般用left_join(x,y,by="name") 以x为主,y中匹配到的都放进来, 但,y中没有的则不放过来。...相比来说,其他一些方法要好一些,有dplyr,sqldf中的union 5、sqldf包 利用SQL语句来写,进行数据合并,适合数据库熟悉的人,可参考: R语言︱ 数据库SQL-R连接与SQL语句执行...(RODBC、sqldf包) 二、数据增减 x=x[,-1] #这个就代表,删除了x数据集中第一列数据 或用dplyr包中的mutate函数 a=mutate(Hdma_dat,dou=2*survived...四、不等长合并 1、plyr包 rbind.fill函数可以很好将数据进行合并,并且补齐没有匹配到的缺失值为NA。
数据清洗是数据分析流程中必不可少的一步。清洗得当的数据是可靠分析的基础,而在R语言中,有许多强大而灵活的工具可以帮助我们高效完成数据清洗。...本文将全面介绍R语言数据清洗的常见技巧,并配以具体的代码示例。 数据清洗常见的任务包括:处理缺失值、数据格式转换、去除重复数据、修正异常值、数据标准化、数据分组与聚合、文本数据清理。...其他工具 根据需求还可以使用lubridate处理日期时间数据,janitor快速清理变量名等。 TIPS 使用示例 缺失值处理:缺失值处理是数据清洗的第一步。可以选择删除、填充或插值的方法。..., 55000, 60000, NA, 70000) )# 检测缺失值 is.na(data) # 删除含有缺失值的行 data_clean % na.omit() # 使用均值填充缺失值...= ifelse(is.na(Salary), mean(Salary, na.rm = TRUE), Salary) ) data_filled 格式转换:在数据清洗中,经常需要将列转换为合适的数据类型
%in% c("setosa","virginica")) 3)变量筛选(列) select函数:可以通过指定列名选择指定的变量进行分析,得到的为选择的列。...select(iris,Sepal.Width,Petal.Length,Species) 其他特殊选择,可匹配: select(iris,contains("." )) #选取名称中含有字符的列 区别...:Filter&Select Filter:通过一些准则选择观测值(行) Select:通过名字来选择变量(列) 更名变量名: Select & Rename head(select(iris,Sepal.W...Width) #计算一个或多个新列并删除原列 6)数据汇总 summarize()函数实现数据集聚合操作,将多个值汇总成一个值 summarise(iris,avg = mean(Sepal.Length...Min ;Max Mean ;Median ;Var ;Sd等 summarise(iris, max(Petal.Width), first(Sepal.Width)) #返回数据框中变量的最大值及第一四分位值
这种方法特别适用于跨区域、跨人群的大规模比较研究,能够帮助科学家们识别与特定健康状况或环境因素相关的微生物标志物。...权重分配:根据每个研究的样本大小、效应量估计的变异性和其他统计特性分配权重。较大的权重通常给予那些样本量大、估计更精确的研究。...固定效应和随机效应模型:根据异质性的大小,选择使用固定效应模型(假设所有研究共享相同的效应量)或随机效应模型(允许不同研究有不同的效应量)。...敏感性分析和偏倚评估:进行敏感性分析以检查荟萃分析结果对单个研究的依赖程度,以及评估潜在的发表偏倚。...ANCOMBC分析使用ANCOMBC方法对每个研究的gender(male vs female)进行差异分析,获得每个数据集的差异分析结果即每个物种的效应值和效应值标准误差。
epiDisplay 包的函数 summ( )作用于数据框可以得到另一种格式的汇总输出,它将变量按行排列,把最小值和最大值放在最后两列以方便查看数据的全距。...除了上面提到的函数 summary( ),R 中还有很多用于计算特定统计量的函数(见第二章)。...例如,计算数据框 cont.vars 中各个变量的样本标准差: sapply(cont.vars, sd) 基本包中没有提供计算偏度和峰度的函数,我们可以根据公式自己计算,也可以调用其他包里的函数计算,...psych 包里的函数 describe( )可以计算变量忽略缺失值后的样本量、均值、标准差、中位数、截尾均值、绝对中位差、最小值、最大值、全距、偏度、峰度和均值的标准误等。...如果直接使用 list(birthwt$smoke),则上面分组列的名称将会是“Group.1”而不是“smoke”。
5.5.2 两个分类变量 要想对两个分类变量间的相关变动进行可视化表示,需要计算出每个变量组合中的观测数量。...)) 【注】图中每个圆点的大小表示每个变量组合中的观测数量。...相关变动就表示为特定 x 轴变量值与特定 y 轴变量值之间的强相关关系。 ?...,那么可以使用seriation包对行和列同时进行重新排序,以便更清楚地表示出有趣的模式。...解答 为了清楚地显示切割质量在颜色内的分布,可以引入一个新的变量prop,即每个切割在颜色内的比例。
(如一个样本的种级别表包含多个相同名称的种);2、另一个原因是让函数不试图去修正种的名字,来保证系统上的正确(否则,名字中的空间可能变为.)。...正则表达式中,R语言的通配符$,*等,如果匹配它们需要用"\",如果匹配“\”,得上“\\”了。其他的还是和别的语言一致的。 ?...重要的函数包括: select() 和 rename() 基于名字选择列(变量) filter() 基于值过滤行(cases) arrange() 重新排序行 (cases) mutate() 和 transmute...()创建新列, 例如, 通过已有变量,调用函数增加新的变量 summarise() 汇总数值 group_by() 分组观察值,分开和合并 sample_n() 和 sample_frac() 随机抽样...,基于特定标准选择列,使用select(),例如:starts_with()#起始字符, ends_with()#结束字符, matches()#正则表达式, contains()#匹配一个字符常量,
领取专属 10元无门槛券
手把手带您无忧上云