首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

距离度量 —— 欧式距离(Euclidean Distance)

一、概述 欧式距离,也称为 欧几里得距离,是我们从小学、初中、高中等等乃至现在都会用到的距离度量。...“两点之间线段最短” 大家都学过吧,这里只不过给换了一个高大上的英文名字,就是我们在小初高等试卷上计算距离的那个公式 二、计算公式 ① 二维平面上的欧式距离 假设 二维平面 内有两点: a(x_{1},...y_{1}) 与 b(x_{2},y_{2}) 则二维平面的距离公式为: d_{12}=\sqrt{(x_{1}-x_{2})^2+(y_{1}-y_{2})^2} 举个例子,就比如上图的 A(...+4+16}\\ &= 2\sqrt{5} \end{aligned} ③ n维空间上的欧式距离 假设 n维空间 内有两点: a(x_{11},x_{12},......,x_{2n}) 则n维空间的距离公式为: d_{12}=\sqrt{\sum_{k=1}^n(x_{1k}-x_{2k})^2} 同理,n 维空间也是,将对应的向量作以上运算即可。

4.6K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    距离度量 —— 曼哈顿距离(Manhattan Distance)

    想要计算两个建筑之间的距离,我们不能横穿某个建筑,需要拐弯抹角,经过一个个十字路口,才能到达我们想要去的地方。...曼哈顿距离,也正是这个原理,不能像 绿线(/) 一样,横穿建筑,而是需要和其它三条线一样, 穿过大街小巷。...二、计算公式 ① 二维平面上的曼哈顿距离 假设 二维平面 内有两点: a(x_{1},y_{1}) 与 b(x_{2},y_{2}) 则二维平面的曼哈顿距离公式为: d_{12}=|x_{1}-x_...&=4+3\\ &=7 \end{aligned} ② 三维空间上的曼哈顿距离 假设 三维空间 内有两点: a(x_{1},y_{1},z_{1}) 与 b(x_{2},y_{2},z_{2}) 则三维空间的距离公式为...,z_{2n}) 则n维空间的距离公式为: d_{12}=\sum_{k=1}^n|x_{1k}-x_{2k}|

    2.6K10

    距离度量 —— 汉明距离(Hamming Distance)

    一、概述 汉明距离(Hamming Distance),就是将一个字符串变成另一个字符串所需要的替换次数。...二、计算方式 举个例子, 1011101 与 1001001 的 汉明距离 为 2 式1 1 0 1 1 1 0 1 式2 1 0 0 1 0 0 1 只要将 式1 中标红的部分换一下即可。...2143896 与 2233786 的 汉明距离 为 3 式1 2 1 4 3 8 9 6 式2 2 2 3 3 7 9 6 只要将 式1 中标红的部分换一下即可。...三、汉明重量 汉明重量 就是字符串相对于相同长度的零字符串的汉明距离;也就是说,它是字符串中非零的元素个数:对于二进制字符串来说,就是 1 的个数,所以 11101 的汉明重量是 4。...因此,如果向量空间中的元素 a 和 b 之间的汉明距离等于它们汉明重量的差 a-b。

    1.7K10

    欧式距离、曼哈顿距离、切比雪夫距离三种距离的可视化展示

    在看空间统计相关的文档资料的时候,看到了几个有关距离丈量方法的术语词汇,诸如:欧式距离、曼哈顿距离、切比雪夫距离…… 老外习惯于使用名字来命名算法,可是对于门外汉们,是一种困惑,今天就整理下,一起温故知新...欧式距离(Euclidean Distance) 欧式距离是我们在直角坐标系中最常用的距离量算方法,例如小时候学的“两点之间的最短距离是连接两点的直线距离。”这就是典型的欧式距离量算方法。...曼哈顿距离(Manhattan Distance) 曼哈顿距离是与欧式距离不同的一种丈量方法,两点之间的距离不再是直线距离,而是投影到坐标轴的长度之和。 ? 还是看图吧,图比文字更显见。 ?...图中绿色的线为欧式距离的丈量长度,红色的线即为曼哈顿距离长度,蓝色和黄色的线是这两点间曼哈顿距离的等价长度。 想想我们下象棋的时候,车炮兵之类的,是不是要走曼哈顿距离?...切比雪夫距离(Chebyshev distance) 数学上,切比雪夫距离是将2个点之间的距离定义为其各坐标数值差的最大值。 ?

    17.8K31

    Wasserstein距离

    Wasserstein距离Wasserstein距离度量两个概率分布之间的距离,定义如下: Π...对于每一个可能的联合分布γ,可以从中采样(x,y)∼γ得到一个样本x和y,并计算出这对样本的距离||x−y||,所以可以计算该联合分布γ下,样本对距离的期望值E(x,y)∼γ[||x−y||]。...在所有可能的联合分布中能够对这个期望值取到的下界infγ∼Π(P1,P2)E(x,y)∼γ[||x−y||]就是Wasserstein距离。...而Wasserstein距离就是在最优路径规划下的最小消耗。所以Wesserstein距离又叫Earth-Mover距离。...Wessertein距离相比KL散度和JS散度的优势在于:即使两个分布的支撑集没有重叠或者重叠非常少,仍然能反映两个分布的远近。而JS散度在此情况下是常量,KL散度可能无意义。

    3.2K30

    各种距离

    欧几里得距离 给定空间中两个点 ;它们之间的欧几里得距离公式为: 即两个点之间的直线距离。本质是向量的 2-范数。 2....曼哈顿距离 给定空间中两个点 ;它们之间的曼哈顿距离公式为: 即两个点之间的水平距离绝对值加上垂直距离的绝对值。本质是向量的 1-范数。...切比雪夫距离 给定空间中两个点 ;它们之间的切比雪夫距离公式为: 即两点之间横纵坐标距离绝对值的最大值。本质是向量的 范数。...###【曼哈顿距离与切比雪夫距离比较】 如下图所示,矩形 是到原点曼哈顿距离为 2 的点的集合,矩形 是到原点切比雪夫距离为 2 的点的集合。 image.png 4....闵可夫斯基距离 给定空间中两个点 它们之间的闵可夫斯基距离公式为: 本质是向量的范数,ppp 取不同的值时对应不同的 范数。

    1.7K10

    动态中的守候:滑动窗口与距离的诗篇

    先定义left和right充当我们的左端点和右端点 进窗口 让字符进入哈希表 判断 当窗口内存在重复字符时候,(根据判断结果是否出窗口)执行出窗口(从哈希表中国杀出该字符就完成了出窗口的操作...我们从两个方面来解释:扩展窗口和收缩窗口。 哈希表的作用 hash[128] 是一个大小为 128 的数组,用来记录窗口中每个字符的出现次数。...此时就需要通过移动左指针来缩小窗口,直到这个重复字符被移出窗口。 hash[s[left]]-- 表示将窗口左边界 left 指向的字符移出窗口,减少该字符在哈希表中的出现次数。...进入内层 while,通过移动 left,把窗口左边的 "b" 移除,直到窗口中没有重复字符。 这样不断调整窗口的大小,确保窗口中没有重复字符,并计算最长子串的长度。...第一个 while 循环通过右指针不断扩展窗口,每次把一个新字符加入窗口,并更新哈希表。 第二个 while 循环则通过左指针缩小窗口,直到窗口内没有重复字符为止。

    5510

    距离度量 —— 切比雪夫距离(Chebyshev Distance)

    切比雪夫距离 (Chebyshev Distance) 研究的就是关于 “国王” 移动的问题,国王从一个格子 (x1,y1) 走到 另一个格子 (x2,y2) 最少需要的步数就是 切比雪夫距离 。...二、计算公式 ① 二维平面上的切比雪夫距离 二维平面上的切比雪夫距离就是国王移动问题,比如这里 “国王” 从 (f,3) 移动到 (c,5)。 最短的距离肯定要 斜 着走的距离最大。...所以,平面上两点 A(x_{1},y_{1}) 与 B({x_{2},y_{2}}) 的 切比雪夫距离 为: d_{AB}=max(|x_{1}-x_{2}|,|y_{1}-y_{2}|) 则上面国王的切比雪夫距离为...aligned} d &=max(|x_{1}-x_{2}|,|y_{1}-y_{2}|) \\ &=max(|6-3|,|3-5|)\\ &=3 \end{aligned} ② n维空间上的切比雪夫距离...,x_{2n}) 则n维空间的切比雪夫距离公式为: d_{AB}=max{|x_{1i}-x_{2i}|}

    1.7K10

    距离度量 —— 闵可夫斯基距离(Minkowski Distance)

    一、概述 闵可夫斯基距离 (Minkowski Distance),也被称为 闵氏距离。它不仅仅是一种距离,而是将多个距离公式(曼哈顿距离、欧式距离、切比雪夫距离)总结成为的一个公式。...对于这两个 n 维变量,则有闵氏距离公式为: d_{12}=\sqrt[p]{\sum_{k=1}^n|x_{1k}-x_{2k}|^p} 乍一看,可能觉得这个公式很复杂,也觉得这个公式与前面说到的距离公式...(曼哈顿距离、欧式距离、切比雪夫距离)没太大关联,但当我分解一下,就知道有什么关联了。...闵氏距离的参数 p 闵氏距离主要和它的参数 p 有关, p 值不同,公式也将不同。...a与b的闵氏距离(无论是曼哈顿距离、欧氏距离或切比雪夫距离)等于a与c的闵氏距离。但实际上身高的 10cm 并不能和体重的 10kg 划等号。

    2.5K10

    求编辑距离

    https://blog.csdn.net/ghsau/article/details/78903076 定义 编辑距离又称Leveinshtein距离,是由俄罗斯科学家...),一个字符串的长度为0,编辑距离自然是另一个字符串的长度当min(i,j)=0时,lev_{a,b}(i,j)=max(i,j),一个字符串的长度为0,编辑距离自然是另一个字符串的长度 当ai=bj时...xyz的距离=xx和xyz的距离+1lev_{a,b}(i-1,j)+1(删除a_i),比如xxc和xyz的距离=xx和xyz的距离+1 leva,b(i,j−1)+1(插入bj),比如xxc和xyz的距离...=xxcz和xyz的距离+1=xxc和xy的距离+1lev_{a,b}(i,j-1)+1(插入b_j),比如xxc和xyz的距离=xxcz和xyz的距离+1=xxc和xy的距离+1 leva,b(i−1...,j−1)+1(替换bj),比如xxc和xyz的距离=xxz和xyz的距离+1=xx和xy的距离+1lev_{a,b}(i-1,j-1)+1(替换b_j),比如xxc和xyz的距离=xxz和xyz的距离

    65830
    领券