首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何利用机器学习和分布式计算来对用户事件进行聚类

    导 读 机器学习,特别是聚类算法,可以用来确定哪些地理区域经常被一个用户访问和签到而哪些区域不是。这样的地理分析使多种服务成为可能,比如基于地理位置的推荐系统,先进的安全系统,或更通常来说,提供更个性化的用户体验。 在这篇文章中,我会确定对每个人来说特定的地理活动区域,讨论如何从大量的定位事件中(比如在餐厅或咖啡馆的签到)获取用户的活动区域来构建基于位置的服务。举例来说,这种系统可以识别一个用户经常外出吃晚饭的区域。使用DBSCAN聚类算法 首先,我们需要选择一种适用于定位数据的聚类算法,可以基于提供的数

    06

    从DBSCAN算法谈谈聚类算法

    最近看了一篇关于电子商务防欺诈的相关论文,其中在构建信用卡的个人行为证书中用到了DBSCAN算法。 具体内容请参看论文: Credit card fraud detection: A fusion approach using Dempster–Shafer theory and Bayesian learning。 我就想深入了解下这个聚类方法是怎么工作的。在思考这个具体DBSCAN算法的形成过程中,我还参看了: 1. wikipedia DBSCAN的相关介绍 2. 博文简单易学的机器学习算法——基于密度的聚类算法DBSCAN 3. 论文-A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise 等相关文献。此篇博文尝试讲清楚”物以类聚,人以群分”这个概念,DBSCAN算法中两个参数的实际物理含义,以及它背后所做的基本假设,由于这方面资料不多,因此都属于个人的猜想,不代表发明DBSCAN算法作者本身的想法,且这也是我正式学习聚类算法中的第一个算法,由于知识的局限性,如有不当,请指正。

    01
    领券