D3指的是Data-Driven Documents,js即Javascript,是后缀名。先看看官网上对D3.js库的定义:
作为一个前端,说到可视化除了听过 D3.js 的大名,常见的可视化库还有 ECharts、Chart.js,这两个库功能也很强大,但是有一个共同特点是封装层次高,留给开发者可设计和控制的部分太少。和 EChart、Chart.js 等相比,D3.js** 的相对来说自由度会高很多,得益于 D3.js 中的 SVG 画图对事件处理器的支持**,D3.js 可将任意数据绑定到文档对象模型(DOM)上,也可以直接操作对象模型(DOM)完成 W3C DOM API 相关操作,对于想要展示自己设计图形的开发者,D3.js 绝对是一个不错的选择。
在升级了DeveMobile 主题的时候Jeff 也顺便将主题主页进行了更新,访问主页你会看到首屏的Low-Poly 背景(每次刷新都不同),这个效果就是利用了d3.js 与Trianglify 制作
阅读目录 D3.js — Data-Driven Documents Google Charts ChartJS Chartist.js n3-charts Ember Charts Smoothie Charts Chartkick ZingChart Highcharts JS Fusioncharts Flot amCharts EJS Chart uvCharts 几乎所有的控制面板都会用到图表,它们能够快速有效的展示复杂的统计。此外,一个好的图也可以提高你的网站的整体设计。 这篇文章为大家展示一些
数据可视化之初级篇 零编程工具 1. Tableau Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决
Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决方案,可以让您在线生成可视化报告。服务器解决方案可以提供了云托管服务。Tableau的客户包括巴克莱银行,Pandora和Citrix等企业
Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决方案,可以让您在线生成可视化报告。服务器解决方案可以提供了云托管服务。
数据可视化的工具和程序库已经极大丰盛,当你习惯其中一种或数种时,你会干得很出色,但是如果你因此而沾沾自喜,就会错失从青铜到王者的新工具和程序库。如果你仍然坚持使用Matplotlib(这太神奇了),Seaborn(这也很神奇),Pandas(基本,简单的可视化)和Bokeh,那么你真的需要停下来了解一下新事物了。例如,python中有许多令人惊叹的可视化库,而且通用化程度已经很高,例如下面这五个:
如果您了解并使用上面提到的库,那么您就处于进化的正确轨道上。它们可以帮助生成一些令人拍案的可视化效果,语法也不难。一般来说,我更喜欢Plotly+Cufflinks和 D3.js. 以下详细道来:
从数据获得信息的最佳方式之一是,通过视觉化方式,快速抓住要点信息。另外,通过视觉化呈现数据,也揭示了令人惊奇的模式和观察结果,是不可能通过简单统计就能显而易见看到的模式和结论。
在上篇文章中(D3.js 力导向图的显示优化),我们说过 D3.js 在自定义图形上相较于其他开源可视化库的优势,以及如何对文档对象模型(DOM)进行灵活操作。既然 D3.js 辣么灵活,那是不是实现很多我们想做的事情呢?在本文中,我们将借助 D3.js 的灵活性这一优势,去新增一些 D3.js 本身并不支持但我们想要的一些常见的功能。
对于前段时间流出的QQ群数据大家想必已经有所了解了,处理后大小将近100G,多达15亿条关系数据(QQ号,群内昵称,群号,群内权限,群内性别和年龄)和将近9000万条群信息(群号,群名,创建时间,群介绍),这些数据都是扁平化的2维表格结构,直接查询不能直接体现出用户和群之间的直接或者间接关系。通过数据可视化,可以把扁平结构的数据作为点和线连接起来,从而更加直观的显示出来从而进行分析。 d3.js是一个近年来推出的基于javascript的数据展示库,全称为Data Driven Document, 在浏览器
现代社会早已进入读图时代,图像在一定上程度上取代了文字,占据了主导地位。对于数据分析来说,一张清晰的可视化图表确实比纷繁复杂的数字更清晰美观。随着科技的发展以及可视化需求的急剧增大,涌现了大批的数据可视化工具,通过对比分析市面上众多的数据可视化工具之后,我们挑选了几款给大家进行参考。
SVG,指可缩放矢量图形(Scalable Vector Graphics),是用于描述二维矢量图形的一种图形格式,是由万维网联盟制定的开放标准。 SVG 使用 XML 格式来定义图形。SVG的几个特点
在 JS 程序中,为了实现漂亮的图形、图表和数据可视化,我们选择使用开源库。生活在数据爆炸的时代,我们开发的每一个应用程序几乎都使用或者借助数据来提升用户体验。为了帮助你轻松地为你最喜欢的应用程序添加漂亮的数据可视化,这里列出了 2019 年最好的 JavaScript 数据可视化库(排名不分先后)。
用Excel的话,很难展示出这种效果,那……不如用Python?不用手动排版设计,简单的代码就能直接运行出结果。
上一篇文章「安利一些不错的D3.js资源 - 牛衣古柳 2021.06.29」的反响还不错,记得有新群友说是主管推给她文章才加过来的,也是很神奇。
亲爱的读者,你是否也有在特定场景使用的非常便捷的软件,欢迎评论区留言给我们,和大家分享这些使工作得心应手、效率百倍的瞬间!
数据可视化技术的基本思想是将数据库中每一个数据项作为单个图元元素表示,大量的数据集构成数据图像, 同时将数据的各个属性值以多维数据的形式表示,可以从不同的维度观察数据,从而对数据进行更深入的观察和分析。 图表库 C3 – 以 d3 为基础构建的可重用图表库 Chart.js – 带有 canvas 标签的图表 Chartist.js – 具有强大浏览器兼容能力的响应式图表 Dimple – 适用于业务分析的面向对象的 API Dygraphs – 适用于大型数据集的交互式线性图表库 Echarts – 针对
在开源世界中,某些库为数据可视化提供了许多可能性,包括图形或网络表示。其他库仅专注于网络图表示。通常,这些库比通用库提供更多的功能。您还将找到商业图形可视化库。商业图书馆的优势在于可以保证持续的技术支持和先进的性能。
D3.js提供了多种工具支持数据可视化的交互,其中d3.transition让简单而高效的为图像添加动画成为了可能。
D3.js D3的全称是Data-Driven Documents(数据驱动的文档),是一个用来做数据可视化的JavaScript函数库,而JavaScript文件的后缀通常为.js,所以D3被称为D3.js。 对D3来说,柱形图、散点图、折线图、饼图、弦图、力导向图、树状图等等都不在话下。总之,只要你愿意写代码,D3.js可以满足你对数据可视化的一切幻想。 今天我们以弦图为例进行介绍。 弦图 弦图主要用于表示两个节点之间的联系。两点之间的连线表示二者具有联系,线的粗细表示权重。 下面是之前做的一张电影类型
众多周知,图形和图表要比文本更具表现力和说服力。图表是数据图形化的表示,通过形象的图表来展示数据,比如条形图,折线图,饼图等等。可视化图表可以帮助开发者更容易理解复杂的数据,提高生产的效率和 Web 应用和项目的可靠性。
注:本文有点长,可以点赞?收藏后慢慢看。另外有本文未涉及的、大家觉得不错的D3.js资源教程也欢迎评论进行分享。 前言 从「年更博主冒个泡,或将开启可视化之旅 - 牛衣古柳 - 2020.08.27」
D3.js D3的全称是Data-Driven Documents(数据驱动的文档),是一个用来做数据可视化的JavaScript函数库,而JavaScript文件的后缀通常为.js,所以D3被称为D
注: 在PPV课微信公众号回复“数据科学计划”获取PDF全文,内附学习资料网址推荐,让学习直达源头,不用找度娘更省心! 本文为2017年最全的数据科学学习计划(1)续篇,欢迎小伙们收藏转发学习。 3.5构建个人资料 建议时间:8周(2017年9月-2017年10月) 主题内容: 3.5.1使用GitHub 3.5.2竞赛练习 3.5.3论坛 3.5.1使用GitHub 对于数据科学家来说,有一个GitHub配置文件来管理他/她所做过的项目的所有代码是非常重要的。这样将来你的雇主就可以看到你做了哪些项目,
无论来自哪个行业,世界各地的企业都开始越来越多地意识到数据驱动型决策的重要意义。数据分析目前已经成为各行各业最为关注的议题之一,企业亦开始专注于从数据中获取有价值洞察结论,旨在借此了解过去与未来的各项
这里,通过attr()给每个div添加bar类。使用style()修改每个div的高度。
在数字经济时代,人们需要对大量的数字进行分析,帮助用户更直观的察觉差异,做出判断,减少时间成本。当然,你可能想象不到这种数据可视化的技术可以追溯到2500年前世界上的第一张地图,但是,如今利用各种形态
RAWGraphs是一个在线的开源工具和数据可视化框架,用来处理Excel表中的数据。你只需将数据导入到RAWGraphs中,设计你想要的图表,然后将其导出为SVG格式或PNG格式的图片。此外,上传至RAWGraphs的数据只会在web端在线进行处理,保证了数据的安全性。
D3近年来一直是 JavaScript最重要的数据可视化库之一,在创建者 MikeBostock的维护下,前景依然无量,至少现在没有能打的:
知识图谱项目是一个强视觉交互性的关系图可视化分析系统,很多模块都会涉及到对节点和关系的增删改查操作,常规的列表展示类数据通过表格展示,表单新增或编辑,而图谱类项目通常需要关系图(力导向图:又叫力学图、力导向布局图,是绘图的一种算法,关系图一般采用这种布局方式)去展示,节点和关系的新增编辑也需要前端去做一些复杂的交互设计。除此之外还有节点和关系的各种布局算法,大量数据展示的性能优化,节点动态展开时的局部布局渲染,画布的可扩展性,样式的自定义等等诸多技术难点。目前国内使用最多的两个已开源的前端可视化框架:阿里的AntV、百度的Echarts对于关系图的支持都比较弱,不能完全满足项目中的需求。
想让数据变得更好看?不必成为经验丰富的数据科学家,也不必成为平面设计师。 有一些能让数据从简单的表格变成多种多样的图形,地图甚至词“云”。 并不是所有的工具都适合你,但这些工具确实很有用。 希望你不仅
俗话说的好:工欲善其事,必先利其器!一款好的工具可以让你事半功倍,尤其是在大数据时代,更需要强有力的工具通过使数据有意义的方式实现数据可视化,还有数据的可交互性;我们还需要跨学科的团队,而不是单个数据
导读:数据可视化可以通过视觉形式来呈现抽象的数据信息,有利于对数据进行更深入的观察和分析,除了使用现有的可视化软件和工具,也可以用编程定制属于自己的数据可视化,本文推荐五个技巧教你用编程实现数据可视化
在现代Web开发中,数据可视化已成为展示复杂数据集的关键技术之一。D3.js(Data-Driven Documents)是一个强大的JavaScript库,用于创建动态、交互式的可视化图表。无论是简单的条形图还是复杂的地理热力图,D3.js都能提供灵活且深度的控制。本文旨在为初学者介绍D3.js的基础知识,探讨一些常见的问题及易错点,并提供解决方案和代码示例。
一、Excel Excel作为一个入门级工具,是快速分析数据的理想工具,也能创建供内部使用的数据图,但是Excel在颜色、线条和样式上课选择的范围有限,这也意味着用Excel很难制作出能符合专业出版物和网站需要的数据图。 二、Google Chart API Google Chart提供了一种非常完美的方式来可视化数据,提供了大量现成的图标类型,从简单的线图表到复杂的分层树地图等。它还内置了动画和用户交互控制。 三、D3 D3(Data Driven Documents)是支持SVG渲染的另一种Jav
在之前的文章D3.js库-2-选择元素和绑定数据中,有介绍过D3.js中的两种选择数据的方法,本部分为重复内容,温故而知新:
想让数据变得更好看?不必成为经验丰富的数据科学家,也不必成为平面设计师。有一些能让数据从简单的表格变成多种多样的图形,地图甚至词“云”。并不是所有的工具都适合你,但这些工具确实很有用。希望你不仅能从中学到新的技能和极具创新的工具,更能从中结合你自己的业务有新的发现。
领取专属 10元无门槛券
手把手带您无忧上云