首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

回归-线性回归算法(房价预测项目)

文章目录 简介 损失函数 优化算法 正规方程 梯度下降 项目实战 简介 ---- 线性回归(Linear Regression)是回归任务中最常见的算法,利用回归方程对自变量和因变量进行建模,且因变量和自变量之间是线性关系而得名...,从而可以根据已知数据预测未来数据,如房价预测、PM2.5预测等。...其中,只有一个自变量则称为一元线性回归,包含多个自变量则成为多元线性回归。...如下图,根据已知数据点(蓝色),建模得到红色的回归方程,表示自变量和因变量关系,从而可以输入新的自变量,得到预测值(因变量)。...sklearn库提供了两个线性模型API: LinearRegression()正规方程 fit_intercept:默认True,是否计算偏置 normalize:默认False,是否中心化 copy_X

1.7K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    秒懂“线性回归预测

    线性回归是机器学习中的概念,线性回归预测算法一般用以解决“使用已知样本对未知公式参数的估计”类问题。...答:线性回归预测模型虽然是一元线性方程,但现实中很多应用场景符合这个模型。 例如例子中商品的定价x与商品的销量y之间的关系。...答:很多应用场景不能够使用线性回归模型来进行预测,例如,月份和平均气温,平均气温并不随着月份的增长呈线性增长或下降的趋势。...答:最小二乘法适用于任意多维度的线性回归参数求解,它可求解出一组最优a,b,c解,使得对于样本集set中的每一个样本data,用Y=f(X1,X2,X3,…)来预测样本,预测值与实际值的方差最小。...五、总结 逻辑回归线性回归的一种,线性回归回归的一种 线性回归可以用在预测或分类,多维度(feature)线性问题求解上 可以用最小二乘法,梯度下降法求解线性预测函数的系数 梯度下降法的核心步骤是:

    1.1K20

    贝叶斯线性回归和多元线性回归构建工资预测模型

    我们也可以在其中一个练习中使用MASS包来实现逐步线性回归。 我们将在实验室稍后使用此软件包中使用BAS.LM来实现贝叶斯模型。 数据 本实验室将使用的数据是在全国935名受访者中随机抽取的。...wage, aes(y=wage, x=exper))+geom_point() ggplot(data = wage, aes(y=wage, x=educ))+geom_point() 简单的线性回归...虽然智商分数和工资之间可能存在轻微的正线性关系,但智商充其量只是一个粗略的工资预测指标。我们可以通过拟合一个简单的线性回归来量化这一点。...(0.00709, 0.01050) # 从线性模型m\_lwage\_iq中提取系数值 qnorm(c(0.025, 0.975), mean = iq\_mean\_estimate, sd=iq_sd...Estimate"\]*15+coef(summary(m\_lwage\_scaled\_iq))\["(Intercept)", "Estimate"\] ## \[1\] 8.767568 多元线性回归

    1.8K10

    R语言线性回归模型预测空气质量臭氧数据

    p=11387 尽管线性模型是最简单的机器学习技术之一,但它们仍然是进行预测的强大工具。这尤其是由于线性模型特别容易解释这一事实。...在这里,我将讨论使用空气质量数据集的普通最小二乘回归示例解释线性模型时最重要的方面。...---- 最受欢迎的见解 1.R语言多元Logistic逻辑回归 应用案例 2.面板平滑转移回归(PSTR)分析案例实现 3.matlab中的偏最小二乘回归(PLSR)和主成分回归(PCR) 4.R语言泊松...Poisson回归模型分析案例 5.R语言回归中的Hosmer-Lemeshow拟合优度检验 6.r语言中对LASSO回归,Ridge岭回归和Elastic Net模型实现 7.在R语言中实现Logistic...逻辑回归 8.python用线性回归预测股票价格 9.R语言如何在生存分析与Cox回归中计算IDI,NRI指标

    1.1K10

    R语言线性回归模型预测空气质量臭氧数据

    p=11387 尽管线性模型是最简单的机器学习技术之一,但它们仍然是进行预测的强大工具。这尤其是由于线性模型特别容易解释这一事实。...在这里,我将讨论使用空气质量数据集的普通最小二乘回归示例解释线性模型时最重要的方面。...,即: 臭氧与温度呈正相关 臭氧与风速负相关 这表明应该有可能使用其余特征来形成预测臭氧水平的线性模型。...为了进行回归,F统计量始终指示两个模型之间的差异,其中模型1(p1)由模型2(p2)的特征子集定义: F统计量描述模型2的预测性能(就RSS而言)优于模型1的程度。...检索估计值的置信度和预测区间 通过提供自interval 变量,可以将线性模型的预测转换为区间 。这些区间给出了对预测值的置信度。区间有两种类型:置信区间和预测区间。

    89430

    机器学习-线性回归算法(房价预测项目)

    简介 线性回归(Linear Regression)是回归任务中最常见的算法,利用回归方程对自变量和因变量进行建模,且因变量和自变量之间是线性关系而得名,从而可以根据已知数据预测未来数据,如房价预测、PM2.5...预测等。...其中,只有一个自变量则称为一元线性回归,包含多个自变量则成为多元线性回归。...如下图,根据已知数据点(蓝色),建模得到红色的回归方程,表示自变量和因变量关系,从而可以输入新的自变量,得到预测值(因变量)。...) print("均方误差:", mean_squared_error(y_test, y_pre)) 使用深度学习-Pytorch库求解,可查看另一篇博客Pytorch-张量tensor详解(线性回归实战

    84330

    R语言入门之线性回归

    ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍先回顾一下线性回归模型的成立的四个条件(LINE): (1)线性(linear):自变量X与因变量Y之间应具有线性关系;...R语言提供大量函数用于回归分析,在平时的学习和工作中,最常用的就是多元线性回归,下面我将简单介绍如何在R中进行多元回归分析。 1....,具体含义见下图即可 par(mfrow=c(2,2)) plot(fit) ?...变量选择 一直以来,关于如何从大数据中挑选预测变量的方法一直存在着争议,我们一般会使用逐步回归筛选的方法来进行变量筛选。...最后,利用AIC准则,我们将原回归模型中的变量drat剔除,使模型得以优化。 好了,关于线性回归得内容就讲到这儿,大家一定要牢记并熟练使用lm()这个函数,咱们下期再见!

    2.7K22

    R语言线性回归模型预测空气质量臭氧数据

    p=11387 尽管线性模型是最简单的机器学习技术之一,但它们仍然是进行预测的强大工具。这尤其是由于线性模型特别容易解释这一事实。...在这里,我将讨论使用空气质量数据集的普通最小二乘回归示例解释线性模型时最重要的方面。...,即: 臭氧与温度呈正相关 臭氧与风负相关 这表明应该有可能使用其余特征来形成预测臭氧水平的线性模型。...为了进行回归,F统计量始终指示两个模型之间的差异,其中模型1(p1p1)由模型2(p2p2)的特征子集定义: F统计量描述模型2的预测性能(就RSS而言)优于模型1的程度。...检索估计值的置信度和预测间隔 通过提供自interval 变量,可以将线性模型的预测转换为间隔  。这些间隔给出了对预测值的置信度。间隔有两种类型:置信间隔和预测间隔。

    1.8K00

    机器学习-线性回归预测房价模型demo

    1.题目: 从给定的房屋基本信息以及房屋销售信息等,建立一个回归模型预测房屋的销售价格。 数据下载请点击:下载,密码:mfqy。...5.使用测试数据进行目标函数预测输出,观察结果是否符合预期。或者通过画出对比函数进行结果线条对比。 3.模型选择 这里我们选择多元线性回归模型。公式如下:选择多元线性回归模型。 ?...#选择基于梯度下降的线性回归模型 from sklearn.linear_model import LinearRegression LR_reg=LinearRegression() #进行拟合 LR_reg.fit...但要理解线性回归的概念性东西还是要多看资料。...) mm.fit(t) scaler_t=mm.transform(t) scaler_t=pd.DataFrame(scaler_t,columns=t.columns) #选择基于梯度下降的线性回归模型

    1.8K20

    线性回归 numpy实现线性回归

    手写线性回归 使用numpy随机生成数据 import numpy as np import matplotlib.pyplot as plt # 生成模拟数据 np.random.seed(42)...# 可视化数据 plt.scatter(X, y) plt.xlabel('X') plt.ylabel('y') plt.title('Generated Data') plt.show() 定义线性回归参数并实现梯度下降...当假设函数中的系数 θ 取不同的值时, \frac{1}{2m} 倍假设函数预测值 h_θ(x^{(i)}) 和真实值 y^{(i)} 的差的平方的和之间的函数关系表示为代价函数 J 。...) plt.ylabel('y') plt.legend() plt.title('Linear Regression using Gradient Descent') plt.show() 实现多元线性回归...多元线性回归的梯度下降算法: θ_j≔θ_j−α\frac{∂J(θ)}{∂θ_j} 对 \frac{∂J(θ)}{∂θ_j} 进行等价变形: θ_j≔θ_j−α\frac{1}{m}∑_{i=1}^

    40110

    R语言进阶之广义线性回归

    广义线性回归是一类常用的统计模型,在各个领域都有着广泛的应用。今天我会以逻辑回归和泊松回归为例,讲解如何在R语言中建立广义线性模型。...在R语言中我们通常使用glm()函数来构建广义线性模型,glm实际上是generalized linear model(广义线性模型)的首字母缩写,它的具体形式如下所示: glm(formula, family...从输出结果来看,花瓣长度是可以较好区分这两类鸢尾花的,但是这个模型是原始和粗糙的,我们应该通过回归诊断的方式来修正此模型,使之更加精确,关于回归诊断请参见R语言入门之线性回归,这里就不赘述。...# 泊松回归 # counts是计数值 # outcome是指患者治疗后可能的结局 # treatment是指对患者采取的治疗措施 counts <- c(18,17,15,20,10,20,25,13,12...关于广义线性回归模型的应用就先分享到这里,希望大家持续关注【生信与临床】!

    1.8K41

    R语言教程之-线性回归

    回归分析是一种非常广泛使用的统计工具,用于建立两个变量之间的关系模型。 这些变量之一称为预测变量,其值通过实验收集。 另一个变量称为响应变量,其值从预测变量派生。...在线性回归中,这两个变量通过方程相关,其中这两个变量的指数(幂)为1.数学上,线性关系表示当绘制为曲线图时的直线。 任何变量的指数不等于1的非线性关系将创建一条曲线。...线性回归的一般数学方程为 - y = ax + b 以下是所使用的参数的描述 - y是响应变量。 x是预测变量。 a和b被称为系数常数。...建立回归的步骤 回归的简单例子是当人的身高已知时预测人的体重。 为了做到这一点,我们需要有一个人的身高和体重之间的关系。 创建关系的步骤是 - 进行收集高度和相应重量的观测值的样本的实验。...使用R语言中的lm()函数创建关系模型。 从创建的模型中找到系数,并使用这些创建数学方程 获得关系模型的摘要以了解预测中的平均误差。 也称为残差。

    1.3K20

    线性回归:简单线性回归详解

    【导读】本文是一篇专门介绍线性回归的技术文章,讨论了机器学习中线性回归的技术细节。线性回归核心思想是获得最能够拟合数据的直线。...文中将线性回归的两种类型:一元线性回归和多元线性回归,本文主要介绍了一元线性回归的技术细节:误差最小化、标准方程系数、使用梯度下降进行优化、残差分析、模型评估等。在文末给出了相关的GitHub地址。...Linear Regression — Detailed View 详细解释线性回归 线性回归用于发现目标与一个或多个预测变量之间的线性关系。...有两种类型的线性回归 – 一元线性回归(Simple)和多元线性回归(Multiple)。 一元线性回归 ---- 一元线性回归对于寻找两个连续变量之间的关系很有用。...目标是设计一个模型,给定学习时间,可以预测成绩。使用训练数据,获得将会给出最小误差的回归线。然后这个线性方程可以用于任何新的数据。

    2K80
    领券