首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    一文带你了解Python爬虫(一)——基本原理介绍

    1. 企业生产的用户数据: 大型互联网公司有海量用户,所以他们积累数据有天然的优势。有数据意识的中小型企业,也开始积累的数据。 2. 数据管理咨询公司: 通常这样的公司有很庞大的数据采集团队,一般会通过市场调研、问卷调查、固定的样本检测, 和各行各业的公司进行合作、专家对话(数据积累很多年了,最后得出科研结果)来采集数据。 3. 政府/机构提供的公开数据: 政府通过各地政府统计上报的数据进行合并;机构都是权威的第三方网站。 4. 第三方数据平台购买数据: 通过各个数据交易平台来购买各行各业需要的数据,根据获取难度不同,价格也会不同。 5. 爬虫爬取数据: 如果市场上没有我们需要的数据,或者价格太高不愿意买, 那么就可以招/做一个爬虫工程师,从互联网上定向采集数据。

    03

    Python爬虫——Scrapy简介

    Scrapy Engine(引擎):Scrapy框架的核心部分。负责在Spider和ItemPipeline、Downloader、Scheduler中间通信、传递数据等。 Spider(爬虫):发送需要爬取的链接给引擎,最后引擎把其他模块请求回来的数据再发送给爬虫,爬虫就去解析想要的数据。这个部分是我们开发者自己写的,因为要爬取哪些链接,页面中的哪些数据是我们需要的,都是由程序员自己决定。 Scheduler(调度器):负责接收引擎发送过来的请求,并按照一定的方式进行排列和整理,负责调度请求的顺序等。 Downloader(下载器):负责接收引擎传过来的下载请求,然后去网络上下载对应的数据再交还给引擎。 Item Pipeline(管道):负责将Spider(爬虫)传递过来的数据进行保存。具体保存在哪里,应该看开发者自己的需求。 Downloader Middlewares(下载中间件):可以扩展下载器和引擎之间通信功能的中间件。 Spider Middlewares(Spider中间件):可以扩展引擎和爬虫之间通信功能的中间件。

    02

    [Python从零到壹] 十.网络爬虫之Selenium爬取在线百科知识万字详解(NLP语料构造必备)

    随着互联网和大数据的飞速发展,我们需要从海量信息中挖掘出有价值的信息,而在收集这些海量信息过程中,通常都会涉及到底层数据的抓取构建工作,比如多源知识库融合、知识图谱构建、计算引擎建立等。其中具有代表性的知识图谱应用包括谷歌公司的Knowledge Graph、Facebook推出的实体搜索服务(Graph Search)、百度公司的百度知心、搜狗公司的搜狗知立方等。这些应用的技术可能会有所区别,但相同的是它们在构建过程中都利用了Wikipedia、百度百科、互动百科等在线百科知识。所以本章将教大家分别爬取这三大在线百科。

    02

    [Python从零到壹] 四.网络爬虫之入门基础及正则表达式抓取博客案例

    随着互联网的迅速发展,万维网成为大量信息的载体,越来越多的网民可以通过互联网获取所需的信息,同时如何有效地提取并利用这些信息也成为了一个巨大的挑战。搜索引擎(Search Engine)作为辅助人们检索信息的工具,它成为了用户访问万维网的入口和工具,常见的搜索引擎比如Google、Yahoo、百度、搜狗等。但是,这些通用性搜索引擎也存在着一定的局限性,比如搜索引擎返回的结果包含大量用户不关心的网页;再如它们是基于关键字检索,缺乏语义理解,导致反馈的信息不准确;通用的搜索引擎无法处理非结构性数据,图片、音频、视频等复杂类型的数据。

    01
    领券