Dijkstra 一.算法背景 Dijkstra 算法(中文名:迪杰斯特拉算法)是由荷兰计算机科学家 Edsger Wybe Dijkstra 提出。该算法常用于路由算法或者作为其他图算法的一个子模块。举例来说,如果图中的顶点表示城市,而边上的权重表示城市间开车行经的距离,该算法可以用来找到两个城市之间的最短路径。
2、考虑到交通图的有向行(如航运,逆水和顺水时的船速就不一样)带权有向图中,称路径上的第一个顶点为源点,最后一个顶点为终点。
这里,我们想要得出节点a(节点1)到节点b(节点5)的最短路径,就是怎么走可以使得权重值的和最小,每一条边都有一个权重。
因为最近在用R语言,所以代码使用R语言完成。语言只是工具,算法才是灵魂。Floyd算法简单暴力,三个for循环搞定。但是相应是要付出代价的,时间复杂度为O(n^3)。今天学习的是一个O(n^2)的算法--经典Dijkstra(迪杰斯特拉)算法,这也是经典贪心算法的好例子。
在一个连通图中,从一个顶点到另一个顶点间可能存在多条路径,而每条路径的边数并不一定相同。如果是一个带权图,那么路径长度为路径上各边的权值的总和。两个顶点间路径长度最短的那条路径称为两个顶点间的最短路径,其路径长度称为最短路径长度。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY 版权协议,转载请附上原文出处链接和本声明。
学习此算法的原因:昨天下午遛弯的时候,碰到闺蜜正在看算法,突然问我会不会弗洛伊德算法?我就顺道答应,然后用了半个小时的时间,学习了此算法,并用5分钟讲解给她听,在此也分享给各位需要的朋友,让你们在最短的时间内,透彻的掌握该算法。
2023-05-12:存在一个由 n 个节点组成的无向连通图,图中的节点按从 0 到 n - 1 编号,
SPF(shortest path first)算法也叫Dijkstra(迪杰斯特拉)算法,由上个世纪的计算机科学家狄克斯特拉提出,是离散数学中一种经典高效的网络(连通图)最短路径寻路算法.指定一个源点,求出到其余各个顶点的最短路径,也叫”单源最短路径”.
图的最重要的应用之一就是在交通运输和通信网络中寻找最短路径。例如在交通网络中经常会遇到这样的问题:两地之间是否有公路可通;在有多条公路可通的情况下,哪一条路径是最短的等等。这就是带权图中求最短路径的问题,此时路径的长度不再是路径上边的数目总和,而是路径上的边所带权值的和。带权图分为无向带权图和有向带权图,但如果从A地到B地有一条公路,A地和B地的海拔高度不同,由于上坡和下坡的车速不同,那么边<A,B>和边<B,A>上表示行驶时间的权值也不同。考虑到交通网络中的这种有向性,本篇也只讨论有向带权图的最短路径。一般习惯将路径的开始顶点成为源点,路径的最后一个顶点成为终点。
每个节点或是红色,或是黑色。 根节点是黑色。 每个叶节点(NIL或空节点)是黑色。 如果一个节点是红色的,则它的子节点都是黑色的。 从任一节点到其每个叶子的简单路径上,均包含相同数目的黑色节点。 现在,我们假设从节点 x 到其任一后代叶节点的最长简单路径长度为 L,最短简单路径长度为 S。由于红黑树的性质 5,最长路径和最短路径上的黑色节点数量是一样的,我们设这个数量为 B。
在计算机科学中,寻找图中最短路径是一个经典问题。 Dijkstra 算法和 Floyd-Warshall 算法是两种常用的最短路径算法。本篇博客将重点介绍这两种算法的原理、应用场景以及使用 Python 实现,并通过实例演示每一行代码的运行过程。
上篇博客我们详细的介绍了两种经典的最小生成树的算法,本篇博客我们就来详细的讲一下最短路径的经典算法----迪杰斯特拉算法。首先我们先聊一下什么是最短路径,这个还是比较好理解的。比如我要从北京到济南,而从北京到济南有好多条道路,那么最短的那一条就是北京到济南的最短路径,也是我们今天要求的最短路径。 因为最短路径是基于有向图来计算的,所以我们还是使用上几篇关于图的博客中使用的示例。不过我们今天博客中用到的图是有向图,所以我们要讲上篇博客的无向图进行改造,改成有向图,然后在有向图的基础上给出最小生成树的解决方案。
常见的数据结构中树的应用较多一些,在树的节点关系中称之为父子关系,而在一些特定场景下图能更清晰表达。
Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。由for循环可知,其时间复杂度是O(n^2)。
要令 A 到 B 之间的 距离 变短 , 只能 引入 第三个点 K , A 先到 K , 然后从 K 到 B ,
Dijkstra算法 算法描述 1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就
问题描述 该问题来源于参加某知名外企的校招面试。根据面试官描述,一块木板有数百个小孔(坐标已知),现在需要通过机械臂在木板上钻孔,要求对打孔路径进行规划,力求使打孔总路径最短,这对于提高机械臂打孔的生产效能、降低生产成本具有重要的意义。 数学模型建立 问题分析 机械臂打孔生产效能主要取决于以下三个方面: 单个孔的钻孔作业时间,这是由生产工艺所决定的,不在优化范围内,本文假定对于同一孔型钻孔的作业时间是相同的。 打孔机在加工作业时,钻头的行进时间。 针对不同孔型加工作业时间,刀具的转换时间。 在机
简单地说,就是给定一组点,给定每个点间的距离,求出点之间的最短路径。举个例子,乘坐地铁时往往有很多线路,连接着不同的城市。每个城市间距离不一样,我们要试图找到这些城市间的最短路线。
持续创作,加速成长!这是我参与「掘金日新计划 · 10 月更文挑战」的第21天,点击查看活动详情
在http://blog.csdn.net/hacker_zhidian/article/details/54898064这一篇博客中总结了一下在求图的最短路中的一个算法-Floyd算法,Floyd算法用于求图的多源最短路径(多源最短路径:图的所有顶点到其他顶点的最短路径),时间复杂度和其他求最短路算法相比较高,如果一些题目只要求求单源最短路径(单源最短路径:图的某个顶点到其他顶点的最短路径)的话,Floyd算法显然不是最好的选择,那么今天我们来看一下另一个用于求单源最短路径的算法:Dijkstra算法。
在图论中,介数(Betweenness)反应节点在整个网络中的作用和影响力。而本文主要介绍如何基于 Nebula Graph 图数据库实现 Betweenness Centrality 介数中心性的计算。
在一个给定的图中求两个顶点的最短路径的算法一直是比较常用和比较重要的算法。主要的求最短路径的算法有Floyd算法、Dijkstra算法和Bellman-Ford算法等等,本篇我们先来看一下Floyd算法:
目前,在计算机这个学科中有两个非常重要方向:一个是离散优化的经典算法-图算法,例如SAT求解器、整数规划求解器;另一个是近几年崛起的深度学习,它使得数据驱动的特征提取以及端到端体系结构的灵活设计成为可能。
该问题来源于参加某知名外企的校招面试。根据面试官描述,一块木板有数百个小孔(坐标已知),现在需要通过机械臂在木板上钻孔,要求对打孔路径进行规划,力求使打孔总路径最短,这对于提高机械臂打孔的生产效能、降低生产成本具有重要的意义。
单源最短路径问题,即在图中求出给定顶点到其它任一顶点的最短路径。在弄清楚如何求算单源最短路径问题之前,必须弄清楚最短路径的最优子结构性质。 一.最短路径的最优子结构性质 该性质描述为:如果P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必定是从k到s的最短路径。下面证明该性质的正确性。 假设P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P
2.执行上述 4、5两步骤,找出U集合中路径最短的节点D 加入S集合,并根据条件 if ( 'D 到 B,C,E 的距离' + 'AD 距离' < 'A 到 B,C,E 的距离' ) 来更新U集合
在http://blog.csdn.net/hacker_zhidian/article/details/54915152这篇博客中,我们用Dijkstra算法单源最短路径,但是Dijkstra算法对于存在负权边的图就无能为力了,接下来就是Bellman-Ford算法显威的时候了,因为它能解决存在负权边的图中的单源最短路径问题。Bellman-Ford算法的核心思想是:对图中所有的边进行缩放,每一次缩放更新单源最短路径。 我们依然通过一个例子来看:
Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra 算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。
viterbi算法是一个特殊但应用最广的动态规划算法,利用动态规划,可以解决任何一个图中的最短路径问题。而viterbi算法针对的是一个特殊的图——篱笆网络的有向图(Lattice)的最短路径问题而提出的。它之所以重要,是因为凡是使用隐马尔可夫模型描述的问题都可以用它来解码,包括今天的数字通信、语音识别、机器翻译、拼音转汉字、分词等
如果从图中某一顶点(称为源点)到达另一顶点(称为终点)的路径可能不止一条,如何找到一条路径使得沿此路径上各边上的权值总和达到最小。
在过去,很多巧妙的计算机算法设计,改变了我们的计算技术。通过操作标准计算机中提供的中间运算符,可以产生很多的高效函数。这些函数导致了计算机程序的复杂性和多样性,这也是今天计算机时代快速发展的重要原因。如下所示,我们列举了一些算法,它们改变了我们的计算机使用。
先简单介绍一下最短路径: 最短路径是啥?就是一个带边值的图中从某一个顶点到另外一个顶点的最短路径。 官方定义:对于内网图而言,最短路径是指两顶点之间经过的边上权值之和最小的路径。 并且我们称路径上的第一个顶点为源点,最后一个顶点为终点。 由于非内网图没有边上的权值,所谓的最短路径其实是指两顶点之间经过的边数最少的路径。 我们时常会面临着对路径选择的决策问题,例如在中国的一些一线城市如北京、上海、广州、深圳等,一般从A点到到达B点都要通过几次地铁、公交的换乘才可以到达。 有些朋友想用最短对的时间,有些朋
学霸刷完 200 道题,会对题目分类,并总结出解决类型问题的通用模板,我不喜欢模板这个名词,感觉到投机的意味,或许用方法或通用表达式更高级一点。而事实上模板一词更准确。
那这篇文章我们要再来学习一个求解多源最短路径的算法——Floyd-Warshall算法
Python算法设计篇(9) Chapter 9: From A to B with Edsger and Friends
在非网图中,最短路径是指两顶点之间经历的边数最少的路径。 在网图中,最短路径是指两顶点之间经历的边上权值之和最短的路径。
2.BFS可能会是Dijkstra算法的实质,BFS使用的是队列进行操作,而Dijkstra采用的是优先队列。
在加权图G=(V,E)中,求给定顶点s,d之间各边权值总和最小的路径,这就是最短路径问题。
关键路径——在AOE-网中有些活动可以并行地进行,所以完成工程的最短时间是从开始点到完成点的最长路径的长度,路径长度最长的路径叫做关键路径(Critical Path)。
本文介绍了如何利用联动配置实现多模块之间的解耦,以及如何使用配置项来控制模块的行为,达到模块间相互独立的目的。同时,文章还介绍了一种简化版的联动配置方法,通过将配置项以json格式存储在模块配置文件中,实现快速配置。
存档: 1 #include <stdio.h> 2 #include <stdlib.h> 3 #define maxv 10//定义最大顶点数 4 typedef char elem;//图中顶点的数据类型 5 #include "graph.h" 6 void main() 7 { 8 elem v0; 9 int v; 10 mgraph g; 11 printf("1.初始化函数测试:\n"); 12 initial(g); 13
翻译:programmer_lin 摘自:伯乐在线 微信ID: jobbole 如需转载,务必联系“伯乐在线” 在过去,很多巧妙的计算机算法设计,改变了我们的计算技术。通过操作标准计算机中提供的中间
在有向连通图中,从任意顶点i到顶点j的最短路径,可以看做从顶点i出发,经过m个顶点中转,到达j的最短路程。最开始可以只允许经过”1”号顶点进行中转,接下来只允许经过”1”号顶点和”2”号顶点进行中转……允许经过”1”~”m”号顶点进行中转,求任意两顶点的最短路程。
There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city.
动态规划 , 英文名称 Dynamic Programming , 简称 DP , 不是具体的某种算法 , 是一种算法思想 ;
Dijkstra算法,中文名音译作迪杰斯特拉算法或戴克斯特拉算法,它是一个用来解决赋权图的单源最短路径问题的算法。
N-最短路径 是中科院分词工具NLPIR进行分词用到的一个重要算法,张华平、刘群老师在论文《基于N-最短路径方法的中文词语粗分模型》中做了比较详细的介绍。该算法算法基本思想很简单,就是给定一待处理字串,根据词典,找出词典中所有可能的词,构造出字串的一个有向无环图,算出从开始到结束所有路径中最短的前N条路径。因为允许相等长度的路径并列,故最终的结果集合会大于或等于N。
)。对于有向图来讲,假设有两个顶点,v1,v2,他们之间只有4种连接情况,依次类推
Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。
领取专属 10元无门槛券
手把手带您无忧上云