该题为什么想到哈希:涉及到快速查找数组中是否出现某元素(在nums2中找是否有nums1中的字母)
我们知道DISTINCT可以去掉重复数据,GROUP BY在分组后也会去掉重复数据,那这两个关键字在去掉重复数据时的效率,究竟谁会更高一点?
本文通过Excel的新功能Power Query结合数据有效性功能,实现最简单实用的去掉重复数据并在表格中下拉显示的效果。
sql DISTINCT去掉重复的数据统计方法(2009-01-13 15:05:43)转载 标签:sqldistinct杂谈 分类:sql
本次总结来源网络,有多处参考 在R语言中,去掉重复数据的函数是:duplicated 删掉所有列中数据一样的: >test <- data.frame( x1 = c(1,2,3,4,5,1,3,5), x2 = c("a","b","c","d","e","a","b","e"), x3 = c("a","b","c","d","e","a","c","e")) > test x1 x2 x3 1 1 a a 2 2 b b 3 3 c c 4 4 d d
我们可能会出现这种情况,某个表原来设计不周全,导致表里面的数据数据重复,那么,如何对重复的数据进行删除呢? 重复的数据可能有这样两种情况,第一种时表中只有某些字段一样,第二种是两行记录完全一样。 一、对于部分字段重复数据的删除 先来谈谈如何查询重复的数据吧。 下面语句可以查询出那些数据是重复的: select 字段1,字段2,count(*) from 表名 group by 字段1,字段2 having count(*) > 1 将上面的>号改为=号就可以查询出没有重复的数据了。 想要删除这些重复的数据,可以使用下面语句进行删除 delete from 表名 a where 字段1,字段2 in (select 字段1,字段2,count(*) from 表名 group by 字段1,字段2 having count(*) > 1) 上面的语句非常简单,就是将查询到的数据删除掉。不过这种删除执行的效率非常低,对于大数据量来说,可能会将数据库吊死。所以我建议先将查询到的重复的数据插入到一个临时表中,然后对进行删除,这样,执行删除的时候就不用再进行一次查询了。如下: CREATE TABLE 临时表 AS (select 字段1,字段2,count(*) from 表名 group by 字段1,字段2 having count(*) > 1) 上面这句话就是建立了临时表,并将查询到的数据插入其中。 下面就可以进行这样的删除操作了: delete from 表名 a where 字段1,字段2 in (select 字段1,字段2 from 临时表); 这种先建临时表再进行删除的操作要比直接用一条语句进行删除要高效得多。 这个时候,大家可能会跳出来说,什么?你叫我们执行这种语句,那不是把所有重复的全都删除吗?而我们想保留重复数据中最新的一条记录啊!大家不要急,下面我就讲一下如何进行这种操作。 在oracle中,有个隐藏了自动rowid,里面给每条记录一个唯一的rowid,我们如果想保留最新的一条记录, 我们就可以利用这个字段,保留重复数据中rowid最大的一条记录就可以了。 下面是查询重复数据的一个例子: select a.rowid,a.* from 表名 a where a.rowid != ( select max(b.rowid) from 表名 b where a.字段1 = b.字段1 and a.字段2 = b.字段2 ) 下面我就来讲解一下,上面括号中的语句是查询出重复数据中rowid最大的一条记录。 而外面就是查询出除了rowid最大之外的其他重复的数据了。 由此,我们要删除重复数据,只保留最新的一条数据,就可以这样写了: delete from 表名 a where a.rowid != ( select max(b.rowid) from 表名 b where a.字段1 = b.字段1 and a.字段2 = b.字段2 ) 随便说一下,上面语句的执行效率是很低的,可以考虑建立临时表,讲需要判断重复的字段、rowid插入临时表中,然后删除的时候在进行比较。 create table 临时表 as select a.字段1,a.字段2,MAX(a.ROWID) dataid from 正式表 a GROUP BY a.字段1,a.字段2; delete from 表名 a where a.rowid != ( select b.dataid from 临时表 b where a.字段1 = b.字段1 and a.字段2 = b.字段2 ); commit; 二、对于完全重复记录的删除 对于表中两行记录完全一样的情况,可以用下面语句获取到去掉重复数据后的记录: select distinct * from 表名 可以将查询的记录放到临时表中,然后再将原来的表记录删除,最后将临时表的数据导回原来的表中。如下: CREATE TABLE 临时表 AS (select distinct * from 表名); truncate table 正式表; --注:原先由于笔误写成了drop table 正式表;,现在已经改正过来 insert into 正式表 (select * from 临时表); drop table 临时表;
加班原因是上线,解决线上数据库存在重复数据的问题,发现了程序的bug,很好解决,有点问题的是,修正线上的重复数据。
最近再解决线上数据库存在重复数据的问题,发现了程序的bug,很好解决,有点问题的是,修正线上的重复数据。
哈喽,我是狗哥。最近都在加班有点忙,一直没时间写文章。加班原因是上线,解决线上数据库存在重复数据的问题,发现了程序的 bug,很好解决,有点问题的是,修正线上的重复数据。
日常工作中,使用Hive或者Impala查询导出来可能会存在数据重复的现象,但又不想重新执行一遍查询(查询时间稍长,导出文件内容多),因此想到了使用Linux命令将文件的内容重复数据进行去除。
大家注意:因为微信改了推送机制,会有小伙伴刷不到当天的文章,一些比较实用的知识和信息,错过了就是错过了。所以建议大家加个星标
线上库有6个表存在重复数据,其中2个表比较大,一个96万+、一个30万+,因为之前处理过相同的问题,就直接拿来了上次的Python去重脚本,脚本很简单,就是连接数据库,查出来重复数据,循环删除。
[Err] 1093 - You can't specify target table 'dept' for update in FROM clause 原因:更新这个表的同时又查询了这个表,查询这个表的同时又去更新了这个表,可以理解为死锁。mysql不支持这种更新查询同一张表的操作。所以我们用生成临时表去操作,上面的语句就是这么写的。复制即可。
上图是对save和saveScore两个接口的流程抽象,save是上传答题数据,saveScore则是上传答题分数,为保证幂等和防止并发调用,这两个接口都加了分布式锁(还是两层哦)。第一层使用的是不同的锁,因为处理的是不同的表,第二层处理的是相同的表,为了保证数据在某个维度上的唯一,所以使用了相同的锁。本篇文章则主要记录下表C中的逻辑唯一键出现重复数据的问题排查过程,该问题包含了对锁、事务及Mybatis框架的综合运用和理解。
DISTINCT函数,隶属于“筛选”类函数。微软将其划分为两种模式,列与表模式。但是白茶觉得微软哪怕是不区分出来,相信大家也是了解的。
一:redis是一个开源的,使用C语言编写,支持网络,可基于内存亦可持久化的日志型,key-value方式存储的nosql数据库。作为缓存服务器,速度效率都很快,和memcache相似 redis支持的数据类型:string字符串类型,list链表类型,set无序集合类型,zset有序集合类型和hash哈希类型 redis支持主存同步,数据可以从主服务器上向任意数量的从服务器同步,同样,从服务器也可以作为关联其他从服务器的主服务器 二: 在linux上对redis进本数据类型进行操作 (1)Sting类型
现代密码字典在创建过程中通常会连接多个数据源,在理想情况下,最有可能成功的密码一般都位于字典列表的开头部分,这样才能够确保密码在最短的时间里被破解成功。
在 Twitter 上,我们每天都要实时处理大约 4000 亿个事件,生成 PB 级的数据。我们使用的数据的事件源多种多样,来自不同的平台和存储系统,例如 Hadoop、Vertica、Manhattan 分布式数据库、Kafka、Twitter Eventbus、GCS、BigQuery 和 PubSub。
之前在听到数据压缩的时候, 想着肯定是某些高深莫测的算法, 能够完成数据的压缩这种事情, 最近看了看, 嗯, 至少咱还是能看懂的.
二、获取重复的值(一维数组的值完全相等是重复;如果是二维数组,二维数组中的值必须完全相同才是重复)
我们可以看到,在上面的代码充分估计到了空值的现象(nvl),并对可能的多条记录只取记录最新的列表,但依然可能报错
数据库版本 Server version: 5.1.41-community-log MySQL Community Server (GPL)
>>> for word in ['red', 'blue', 'red', 'green', 'blue', 'blue']:
subset考虑重复发生在哪一列,默认考虑所有列,就是在任何一列上出现重复都算作是重复数据
根据user name查重 SELECT test_user_name, count(*) c from default.test GROUP BY test_user_name HAVING c> 1; 根据id查重 SELECT id ,count(*) c FROM default.test GROUP BY id HAVING c >1; 去重:注意min用法,取相同数据的最小id,去重的重点 min:使用group by 分组后取分组内最小id,以便去掉其它重复数据 INSERT OVERWRITE table default.test partition(test_data_source) select * from default.test where id in ( select min(id) as id from default.test group by test_user_name) ;
众所周知,对于 Llama3、GPT-4 或 Mixtral 等高性能大语言模型来说,构建高质量的网络规模数据集是非常重要的。然而,即使是最先进的开源 LLM 的预训练数据集也不公开,人们对其创建过程知之甚少。
数据库中表存在重复数据,需要清理重复数据,清理后保留其中一条的情况是比较常见的需求,如何通过1条SQL准确的删除数据呢?
本次分享一个交通行业实战项目,这个项目是对出租车GPS数据进行分析,具体内容包括了数据理解、业务场景、数据处理、可视化等。
================================================
当表设计不规范或者应用程序的校验不够严谨时,就容易导致业务表产生重复数据。因此,学会高效地删除重复就显得尤为重要。
即使是知识渊博的数据科学家也能提升他们的技术水平。当谈及到分析你编纂的数据时,有大量的工具可以帮助你更好的理解数据。我们与我们的数据科学指导者探讨了很久,最后总结出了一个包括5个数据科学工具的列表,同时这也是你在当今的社会形势下应该掌握的5个数据科学工具。 dedup dedup是一个Python库,使用机器学习快速的对结构化数据进行重复数据删除和实体解析。 数据科学家发现他们经常需要使用SELECT DISTINCT * FROM my_messy_dataset;不幸的是,现实世界中的数据集往往更加复杂
接口幂等性问题,对于开发人员来说,是一个跟语言无关的公共问题。本文分享了一些解决这类问题非常实用的办法,绝大部分内容我在项目中实践过的,给有需要的小伙伴一个参考。
本节教程将继续介绍SQL基础知识中的SELECT相关的一些知识,包括基础语法、多表连接、去重、排序、子查询等等SELECT方面的基础知识。
Python按照某些列去重,可用drop_duplicates函数轻松处理。本文致力用简洁的语言介绍该函数。
因为通用计算芯片不能满足神经网络运算需求,越来越多的人转而使用GPU和TPU这类专用硬件加速器,加快神经网络训练的速度。
今天遇到一个问题。相同的数据在同一张表里出现了多次。我的需求是删除多余的数据,但要保留其中一条。 定义 表明 table_a ,判断唯一的两个字段 c_1,c_2,无关字段data 表中原始数据如下
有些 MySQL 数据表中可能存在重复的记录,有些情况我们允许重复数据的存在,但有时候我们也需要删除这些重复的数据。
通过程序化的脚本处理,可以实现自动批量处理任务,例如任务的下发、任务的状态查询、任务的完成、业绩和产能交付的统计和结算等。通过集合 触动精灵+API接口 就可以快速实现自己想要的效果。做到自己控制自己的客户端、自己管理自己的数据,既快速又更安全。
工作中,发现Oracle数据库表中有许多重复的数据,而这个时候老板需要统计表中有多少条数据时(不包含重复数据),只想说一句MMP,库中好几十万数据,肿么办,无奈只能自己在网上找语句,最终成功解救,下面是我一个实验,很好理解。
在多个数据中心中需要大量的虚拟机备份存储,这可能会产生巨大的成本。企业运营和维护数据中心的成本非常高,因此很多企业将其业务迁移到云端。
PostgreSQL13.0于2020年9月24日正式release,13版本的PG带来很多优秀特性:比如索引的并行vacuum,增量排序,btree索引deduplication,异构分区表逻辑订阅等。在这里面最闪亮的特性非deduplication莫属。
一般来说,我们在拟合一个机器学习模型或是统计模型之前,总是要进行数据清理的工作。因为没有一个模型能用一些杂乱无章的数据来产生对项目有意义的结果。
在企业环境中,对磁盘空间的需求是惊人的。数据备份、文件服务器、软件镜像、虚拟磁盘等都需要占据大量的空间。对此,微软在Windows Server 2012中引入了重复数据删除技术。 重复数据删除技术通过将文件分割成小的 (32-128 KB) 且可变大小的区块、确定重复的区块,然后保持每个区块一个副本,区块的冗余副本由对单个副本的引用所取代。这样,文件不再作为独立的数据流进行存储,而是替换为指向存储在通用存储位置的数据块的存根。因此,我们可以在更小的空间中存储更多的数据。此外,该项技术还会对区块进行压缩以便进一步优化空间。 根据微软官方的介绍,该项技术有四大好处: 一、容量优化:“重复数据删除”使得 Windows Server 2012 能够在更少的物理空间中存储更多的数据,并获得比以前版本的 Windows 操作系统明显更高的存储效率。以前版本的 Windows 操作系统使用单实例存储 (SIS) 或 NTFS 文件系统压缩。“重复数据删除”使用可变分块大小和压缩,常规文件服务器的优化率为 2:1,而虚拟数据的优化率最高可达 20:1。 二、伸缩性和性能: Windows Server 2012 中的“重复数据删除”具有高度的可伸缩性,能够有效利用资源,并且不会产生干扰。它可以同时对多个大容量主数据运行,而不会影响服务器上的其他工作负载。通过控制 CPU 和内存资源的消耗,保持对服务器工作负载的较低影响。此外,用户可以灵活设置何时应该运行“重复数据删除”、指定用于消除重复的资源并为“重复数据删除”创建有关文件选择的策略。 三、可靠性和数据完整性:在对数据应用“重复数据删除”时,保持数据的完整性。Windows Server 2012 利用校验和值、一致性和身份验证来确保数据的完整性。此外,Windows Server 2012 中的“重复数据删除”会为所有元数据和最常引用的数据保持冗余,以确保这些数据可以在发生损坏时进行恢复。 四、与 BranchCache 相结合提高带宽效率:通过与 BranchCache 进行集成,同样的优化技术还可应用于通过 WAN 传输到分支机构的数据。这会缩短文件下载时间和降低带宽占用。 作为系统管理员,有那么好的技术,自然是要来尝试一下。 首先要为系统添加Data Deduplication角色
Java 8 对自带的排序算法进行了很好的优化。对于整形和其他的基本类型, Arrays.sort() 综合利用了双枢轴快速排序、归并排序和启发式插入排序。这个算法是很强大的,可以在很多情况下通用。针对大规模的数组还支持更多变种。我拿自己仓促写的排序算法跟Java自带的算法进行了对比,看看能不能一较高下。这些实验包含了对特殊情况的处理。
小编们最近参加了数据城堡举办的“大学生助学金精准资助预测”比赛,分组第19名的成绩进入了复赛,很激动有木有!在上一篇文章中,小编带你使用pandas并结合官方给出的一卡通消费数据一步步计算得到了每个同学的恩格尔系数,主要介绍了groupby()和pivot_table()两个方法。虽然有些地方写的不成熟,但是仍然收获了很多的肯定和鼓励,这也是小编再接再厉继续完成本系列的动力,谢谢大家!本篇,小编文文将带你探讨pandas在数据去重中的应用。 1 上期回顾 1.1 groupby groupby用于对pand
领取专属 10元无门槛券
手把手带您无忧上云