整合了语音识别的 Python 程序提供了其他技术无法比拟的交互性和可访问性。最重要的是,在 Python 程序中实现语音识别非常简单。阅读本指南,你就将会了解。你将学到:
【导读】亚马逊的 Alexa 的巨大成功已经证明:在不远的将来,实现一定程度上的语音支持将成为日常科技的基本要求。整合了语音识别的 Python 程序提供了其他技术无法比拟的交互性和可访问性。最重要的是,在 Python 程序中实现语音识别非常简单。阅读本指南,你就将会了解。你将学到:
--AI科技大本营-- 整合了语音识别的 Python 程序提供了其他技术无法比拟的交互性和可访问性。最重要的是,在 Python 程序中实现语音识别非常简单。阅读本指南,你就将会了解。你将学到: •语音识别的工作原理; •PyPI 支持哪些软件包; •如何安装和使用 SpeechRecognition 软件包——一个功能全面且易于使用的 Python 语音识别库。 ▌语言识别工作原理概述 语音识别源于 20 世纪 50 年代早期在贝尔实验室所做的研究。早期语音识别系统仅能识别单个讲话者以及只有约十几个单
整合了语音识别的 Python 程序提供了其他技术无法比拟的交互性和可访问性。最重要的是,在 Python 程序中实现语音识别非常简单。阅读本指南,你就将会了解。你将学到: •语音识别的工作原理; •PyPI 支持哪些软件包; •如何安装和使用 SpeechRecognition 软件包——一个功能全面且易于使用的 Python 语音识别库。 ▌语言识别工作原理概述 语音识别源于 20 世纪 50 年代早期在贝尔实验室所做的研究。早期语音识别系统仅能识别单个讲话者以及只有约十几个单词的词汇量。现代语音识
【导读】亚马逊的 Alexa 的巨大成功已经证明:在不远的将来,实现一定程度上的语音支持将成为日常科技的基本要求。整合了语音识别的 Python 程序提供了其他技术无法比拟的交互性和可访问性。最重要的是,在 Python 程序中实现语音识别非常简单。阅读本指南,你就将会了解。你将学到: •语音识别的工作原理; •PyPI 支持哪些软件包; •如何安装和使用 SpeechRecognition 软件包——一个功能全面且易于使用的 Python 语音识别库。 ▌语言识别工作原理概述 语音识别源于 20 世纪
译者 | 廉洁 编辑 | 明明 出品 | AI科技大本营(公众号ID:rgznai100) 【AI科技大本营导读】亚马逊的 Alexa 的巨大成功已经证明:在不远的将来,实现一定程度上的语音支持将成为日常科技的基本要求。整合了语音识别的 Python 程序提供了其他技术无法比拟的交互性和可访问性。最重要的是,在 Python 程序中实现语音识别非常简单。通过本指南,你将学到: 语音识别的工作原理; PyPI 支持哪些软件包; 如何安装和使用 SpeechRecognition 软件包——一个功能全面且易于
译者 | 廉洁 编辑 | 明明 【AI科技大本营导读】亚马逊的 Alexa 的巨大成功已经证明:在不远的将来,实现一定程度上的语音支持将成为日常科技的基本要求。整合了语音识别的 Python 程序提供了其他技术无法比拟的交互性和可访问性。最重要的是,在 Python 程序中实现语音识别非常简单。阅读本指南,你就将会了解。你将学到: •语音识别的工作原理; •PyPI 支持哪些软件包; •如何安装和使用 SpeechRecognition 软件包——一个功能全面且易于使用的 Python 语音识别库。
NVH(Noise、Vibration、Harshness噪声、振动与声振粗糙度)是衡量汽车制造质量的重要参数,可分为发动机NVH、车身NVH和底盘NVH三大部分。NVH直接决定着驾乘汽车的舒适度,有统计资料显示,整车约有1/3的故障问题是和车辆的NVH问题有关系,而各大公司有近20%的研发费用消耗在解决车辆的NVH问题上。
语音识别源于 20 世纪 50 年代早期在贝尔实验室所做的研究。早期语音识别系统仅能识别单个讲话者以及只有约十几个单词的词汇量。现代语音识别系统已经取得了很大进步,可以识别多个讲话者,并且拥有识别多种语言的庞大词汇表。
作者 | 陈孝良 责编 | 胡永波 目前来看,语音识别的精度和速度比较取决于实际应用环境,在安静环境、标准口音、常见词汇上的语音识别率已经超过95%,完全达到了可用状态,这也是当前语音识别比较火热的原因。 随着技术的发展,现在口音、方言、噪声等场景下的语音识别也达到了可用状态,但是对于强噪声、超远场、强干扰、多语种、大词汇等场景下的语音识别还需要很大的提升。当然,多人语音识别和离线语音识别也是当前需要重点解决的问题。 学术界探讨了很多语音识别的技术趋势,有两个思路是非常值得关注的,一个是就是端到端的语音识别
5月4日,有着最难语音识别任务之称的CHiME-6成绩揭晓:科大讯飞联合中科大语音及语言信息处理国家工程实验室(USTC-NELSLIP)在给定说话人边界的多通道语音识别两个参赛任务上夺冠。
对攻击语音识别系统的研究表明,某些隐藏的语音命令人类无法听见,但是这些声音却可以控制系统。在最近的一些实验中,研究者设计了一个完全听不见的攻击:DolphinAttack,通过将人声负载在高频载波上,可以通过Siri使iPhone发起FaceTime通话。
随着智能化产品的普及,音视频硬件在电子设计中所占的比例越来越高。常见如电视机、导航仪、商超机器人等。音视频硬件中,声学器件是必不可少的基础元件,声学器件主要包括麦克风和喇叭,麦克风拾取声音,喇叭播放声音。麦克风和喇叭的性能优劣,会直接影响到智能语音设备的人机交互体验,本文将对麦克风和喇叭的基础知识做一个简单介绍。
近年来,随着语音识别技术的发展成熟,语音交互越来越多的走进我们的生活。从苹果手机Siri助手的横空出世开始,各大公司纷纷效仿开发自己的语音助手和语音识别平台,手机端的近场语音交互日趋成熟。后来Amazon发布Echo智能音箱,开启了智能硬件远场语音交互时代。相比于Siri手机端近场的语音交互,Echo音箱的语音交互支持距离更远,交互更加自然便捷,它使用了麦克风阵列来保证远距离复杂背景噪声和干扰环境下的良好拾音效果,随后麦克风阵列逐渐成为了后续语音交互智能硬件的标配。
本文来自小鱼在家首席音频科学家邓滨在LiveVideoStackCon 2018讲师热身分享,并由LiveVideoStack整理而成。邓滨认为,传统的信号处理与前沿的深度学习技术结合,才能实现准
韦德马克,2023 年 3 月 14 日 — 今日,森海塞尔正式推出Profile USB麦克风,这款心形电容麦克风使用简单、造型时尚,适合直播和播客等应用场景。通过将专业音质、丰富功能及易用性相结合,森海塞尔Profile USB麦克风令直播主播、播客主播和游戏玩家能够完全专注于内容创作。这款侧向拾音麦克风提供桌面基础套装(建议零售价:人民币 1199 元)和配备三点自锁式悬臂架的 Profile 主播套装(建议零售价:人民币 1849 元)。这两款产品选项均于今日正式上架开售。
最近自己想接触下语音识别,经过一番了解和摸索,实现了对语音识别API的简单调用,正好写文章记录下。目前搜到的帖子里,有现成的调用百度语音API来对音频文件进行识别的;也有通过谷歌语音服务来实现了实时语音识别的。由于我这谷歌语音一直调用不成功,就将二者结合,简单实现了通过百度语音API来进行实时语音识别。
20世纪80年代以来,麦克风阵列信号处理技术得到迅猛的发展,并在雷达、声纳及通信中得到广泛的应用。这种阵列信号处理的思想后来应用到语音信号处理中。在国际上将麦克风阵列系统用于语音信号处理的研究源于1970年。1976年,Gabfid将雷达和声纳中的自适应波束形成技术直接应用于简单的声音获取问题。1985年,美国AT&T/Bell实验室的Flanagan采用21个麦克风组成现行阵列,首次用电子控制的方式实现了声源信号的获取,该系统采用简单的波束形成方法,通过计算预先设定位置的能量,找到具有最大能量的方向。同年,Flanagan等人又将二维麦克风阵列应用于大型房间内的声音拾取,以抑制混响和噪声对声源信号的影响。由于当时技术的制约,使得该算法还不能够借助于数字信号处理技术以数字的方式实现,而主要采用了模拟器件实现,1991年,Kellermann借助于数字信号处理技术,用全数字的方式实现了这一算法,进一步改善了算法的性能,降低了硬件成本,提高了系统的灵活性。随后,麦克风阵列系统已经应用于许多场合,包括视频会议、语音识别、说话人识别、汽车环境语音获取、混响环境声音拾取、声源定位和助听装置等。目前,基于麦克风阵列的语音处理技术正成为一个新的研究热点,但相关应用技术还不成熟。
AI 研习社按:人工智能当前正处于爆发阶段,语音交互作为人工智能的重要组成部分正在各行业全面的落地,在人机进行语音交互的过程中,机器需要通过耳朵实现听觉的作用。
亚马逊Echo和Echo Dot智能音箱获得了成功,它已经使语音命令(通常称为语音UI或语音UI)出现在了新技术产品中。在每一部智能手机和平板电脑上,大多数新型汽车上,以及快速增长的音频产品中,都有这个功能。最终,大多数家用电器,音频和视频产品,甚至像健身跟踪器这样的可穿戴设备,最终也都会有语音命令功能。
机器之心整理 演讲者:俞栋 5 月 27-28 日,机器之心在北京顺利主办了第一届全球机器智能峰会(GMIS 2017),来自美国、加拿大、欧洲,中国香港及国内的众多顶级专家分享了精彩的主题演讲。在这
文 / 陈孝良 11月16号,百度发布了渡鸦智能音箱和DuerOS开发板SoundPi,至此,国内再一名巨头加入智能音箱大战。迄今为止,国内战场上的巨头有阿里、京东、腾讯、百度、小米、科大讯飞等,国外则有苹果、微软、亚马逊、谷歌、脸书、三星等,这些巨头占据了全球市值的排名榜,同时发力争夺未来人工智能时代的语音入口,甚至亚马逊和阿里率先不惜代价开启了补贴大战。这些全球巨头的激烈竞争,将对未来十年产生极其重要的影响,同时,这更是新一波的职业快速发展机会。 语音智能当前的核心关键是声学问题和语义理解,随着市
语音活动检测(Voice Activity Detection, VAD)用于检测出语音信号的起始位置,分离出语音段和非语音(静音或噪声)段。VAD算法大致分为三类:基于阈值的VAD、基于分类器的VAD和基于模型的VAD。
本文转载自机器之心 作者:黄小天 5 月 27 日,由机器之心主办、为期两天的全球机器智能峰会(GMIS 2017)在北京 898 创新空间顺利开幕。大会第一天重要嘉宾「LSTM 之父」Jürgen Schmidhuber、Citadel 首席人工智能官邓力、腾讯 AI Lab 副主任俞栋、英特尔 AIPG 数据科学部主任、GE Transportation Digital Solutions CTO Wesly Mukai 等知名人工智能专家参与峰会,并在主题演讲、圆桌论坛等互动形式下,从科学家、企业家、
其中,最引人注目的当属微软在办公领域的一些列突破,可以说是极具未来感与科幻感,引得网友一片惊呼。当然,开发者相关的众多发布也是非常吸睛的!
这类设备中都集成了麦克风和喇叭等电声器件,其中麦克风用于识别用户的声音,喇叭用于播放设备对用户指令的反应。麦克风的性能是影响语音唤醒率高低的重要因数,而喇叭的性能会影响打断唤醒率和用户的主观体验。接下来将分两篇文章对麦克风和喇叭的一些主要性能参数进行解析,给大家在产品设计时选择声学器件提供一些帮助。
无声的世界里,你只要动动嘴唇,就可以被识别出说了什么、甚至被转化为语音,是不是很智能便利、同时又颇为惊悚? 今年12月,第四届世界互联网大会,搜狗发布唇语识别技术,也系业内首次公开演示。其背后的商业逻辑是什么?这项技术发展到什么地步了? 一、为什么要做唇语识别 搜狗语音交互技术中心负责人陈伟首先回顾了搜狗在语音交互方面的发展历史——早期搜狗于移动时代主要做两件事——输入法与搜索。后来进入智能时代,设备由手机变为IOT设备,人与智能硬件之间的连接也变为搜狗知音引擎这样的自然交互引擎,而硬件、信息,或更深度
导读:谈到人工智能,有人会觉得它的出现会造福全人类,例如Facebook的CEO马克·扎克伯格。当然,也有人持反面观点,例如伊隆·马斯克、史蒂芬·霍金,他们认为人工智能发展到某种程度后,可能就会像好莱坞大片里的剧情一样,威胁全人类。
刚结束了腾讯云BI的体验活动,在文章提到了SaSS、PaSS的概念,腾讯云BI是一个SaSS,而今天要写的腾讯云语音识别就是一个PaSS,平台即服务,用户只需要调用接口就能实现语音识别的功能,而语音识别所需要的算法、计算资源都是PaSS来分配。
语言作为人类的一种基本交流方式,在数千年历史中得到持续传承。近年来,语音识别技术的不断成熟,已广泛应用于我们的生活当中。语音识别技术是如何让机器“听懂”人类语言?本文将为大家从语音前端处理、基于统计学语音识别和基于深度学习语音识别等方面阐述语音识别的原理。
小编所在项目中,C1、C1Pro、C1Max录音笔,通过BLE和APP连接,音频文件实时传输到录音助手App端,具备实时录音转写的功能。工欲善其事必先利其器,小编补习了语音识别相关基础知识,对所测试应用的实时转写业务逻辑有了更深的认识。希望对语音测试的小伙伴们也有所帮助~~(●—●)
捷通华声通过为企业推出更为贴心的全套灵云语音交互解决方案,以及为开发者提供的灵云麦克风阵列SDK、灵云麦克风阵列开发板、灵云种子SDK、灵云语音识别SDK、语音合成SDK、语义理解SDK 等等众多相关
声源定位 一.简介 声音定位是人们感知周围事物的一个重要部分。即使看不到那里有什么,我们也可以根据声音大致判断出我们周围有什么。尝试在电子设备中复制相同的系统可以证明是一种有价值的方式来感知机器人、安全和一系列其他应用的环境。我们构造了一个三角形排列的麦克风来定位任意声音的方向。通过记录来自三个麦克风的输入,我们可以将记录相互关联,以识别音频记录之间的时间延迟。因为三个麦克风的物理位置是已知的,所以可以使用麦克风之间的时间延迟来估计声音的方向。估计方向后,我们在液晶显示器上用箭头显示方向。 二.整体设计思路
Android音视频——编码介绍 Android音视频——相关介绍 相信不少小伙伴们工作一段时间都想如何进阶?很多一直做的都是应用层的APP开发,实现的基本都是UI效果,动画,机型适配,然后集成第三方的lib进行推送,支付,第三方登录,地图等的功能等等需求,如何学一点更深层次的东西?
消费者越来越需要可以随时通过语音控制的产品,可以与数字世界更加安全的和自然的交互。
最近学习一款优秀的开源AI开发套件M1 Dock,该模块集成了Micropython,使用专业的AI芯片k210作为核心处理单元,k210带独立FPU的双核处理,64位的CPU位宽,8M的片上SRAM,400M的可调标称频率,支持乘法、除法和平方根运算的双精度FPU,在AI处理方面k210可进行卷积、批归一化、激活、池化等运算。也可以进行语音方向扫描和语音数据输出的前置处理工作,可实现人脸检测,语音识别,颜色、物体识别,MNIST手写数字识别,Feature map显示,tiny yolov2 20分类等多种功能。
语言模型彻底改变了自然语言处理领域,使计算机能够理解和生成与人类相似的文本。其中一个强大的语言模型是由OpenAI开发的ChatGPT。当前市场上有许多AI玩家,包括ChatGPT、Google Bard、Bing AI Chat等等。然而,所有这些模型都需要您与其进行互动时连接互联网。此外,对于在边缘设备(如单板电脑)上运行类似模型以进行离线和低延迟应用的需求不断增长。
本文介绍麦克风典型应用电路和注意事项。应用电路设计的好坏,会直接影响麦克风的输出性能,从而影响用户的使用体验。
而在最终的用户测试阶段里,TeethTap成功识别了11位参与者的1382个牙齿动作中的1256个,平均准确度达90.9%。
它叫Nest Guard,上面有报警装置、有小键盘、还有运动传感器,是家庭安全套装Nest Secure的一部分。
机器之心原创 作者:高琳 6 月 28 日,讯飞开放平台「万物一听」智能硬件新品发布会在深圳举行,AI+ 生活的未来场景在发布会上带给人想象力上的无限冲击,科技感十足。科大讯飞执行总裁兼消费者事业群总
本发明涉及声源的定位,更具体地讲,涉及一种使用麦克风(MIC)阵列来对声源 定位的方法。
随着疫情的出现,线上会议的应用越来越广泛,相关的技术也越来越成熟,但当前的线上会议系统大都基于电脑和手机,便于个人使用,但由于其摄像头拍摄方向固定,当会议一端有多人参与时,就需要每人都单独开一个窗口才能有较好的效果,较为不便。基于此,我们设计了一个新的会议系统,以更好地适应多人会议的需求。
据一份IHS Markit公司的报告,苹果公司的Siri等语音助手产品均受制于麦克风硬件技术的发展而停滞不前。 不过,Siri的发展瓶颈真的只有麦克风这一个吗?此前,美国某科技博客曾发表一篇署名丹·卡
【AI创新者】是CSDN人工智能频道精心打造的专栏,本期主人公是云知声创始人、CTO梁家恩。 作者:王艺 CSDN AI 编辑 / 记者 投稿、采访、寻求合作请邮件至 wangyi@csdn.ne
引言:计算机科学家开发出了一种可靠提取密钥的新攻击技术:捕捉计算机在展示加密信息时产生的高声调音频。这项密码破解技术(PDF)属于物理攻击,攻击者需要将智能手机的麦克风直接对准目标计算机的风扇通风口,但研究人员提出可以用监听声音的恶意程序感染智能手机,或者其它方法在目标计算机附近安放监听设备。攻击利用了运行GnuPG的计算机CPU产生的不同声波特征,研究人员发现他们能区分不同RSA密钥之间的声波特征,通过测量CPU解密密文时的声音,能完整提取出解密密钥。在演示中,研究人员成功利用一部三星No
领取专属 10元无门槛券
手把手带您无忧上云