这是我13年前创作和发表在互联网上的文章,这么多年过去了,这篇文章仍然在到处传播。现在贴回Linuxer公众号。 全文目录: C语言嵌入式系统编程修炼之道——背景篇 C语言嵌入式系统编程修炼之道——软件架构篇 1.模块划分 2.多任务还是单任务 3.单任务程序典型架构 4.中断服务程序 5.硬件驱动模块 6.C的面向对象化 总结 C语言嵌入式系统编程修炼之道——内存操作篇 1.数据指针 2.函数指针 3.数组vs.动态申请 4.关键字const 5.关键字volatile 6.CPU字长与存储器位宽不一致处
其实小伙伴在写代码的时候,关键字还是用的比较多的,老九主要就平常中用到的常用关键字进行总结,便于小伙伴们更全面的理解其在代码中的意图。 C语言关键字总结 static关键字C语言 const关键字C语言 register关键字用法 auto关键字 inline内联函数 static关键字 static可以用来修饰局部变量、全局变量、函数 1、局部变量: 生命周期:原先存在栈中,生命周期语句执行完毕便结束了。现在存放到静态数据区,生命周期持续到整个程序执行结束。 作用域:并没有改变作用域,还是
在使用C语言操作寄存器前,仍需要先分析《开发板原理图》和《参考手册》,从而得知需要操作哪些外设寄存器,假设读者已经了解需要操作哪些外设寄存器。
寄存器不用全部记住,更不能死记硬背,小代玩单片机多年,还是只记住了最常用的几个寄存器的名称,具体的位设置的什么,还是没记住。在编程时需要配置寄存器的时候,可以上网找,或者书上找别人配置的程序,稍加修改,再或者查找芯片数据手册,查看相关的寄存器的说明。死记硬背寄存器是最最下策的。每种单片机有几十上百个的寄存器,学的单片机系列多了,你记得了那么多来吗?
其实小伙伴在写代码的时候,关键字还是用的比较多的,老九主要就平常中用到的常用关键字进行总结,便于小伙伴们更全面的理解其在代码中的意图。
静态存储方式是指在程序运行期间由系统分配固定的存储空间的方式;动态存储方式是在程序运行期间根据需要进行动态的分配存储空间的方式。
在前面的文章中我们多次提到,计算机CPU能直接解释运行的只有「本地代码」(机器语言)程序。用C语言等编写的源代码,需要通过各自的「编译器」编译后,转换成本地代码。
在内嵌汇编中,可以将C语言表达式指定为汇编指令的操作数,而且不用去管如何将C语言表达式的值读入哪个寄存器,以及如何将计算结果写回C 变量,你只要告诉程序中C语言表达式与汇编指令操作数之间的对应关系即可, GCC会自动插入代码完成必要的操作。 1、简单的内嵌汇编 例:
有时候我们希望在C/C++代码中使用嵌入式汇编,因为C中没有对应的函数或语法可用。比如我最近在ARM上写FIR程序时,需要对最后的结果进行饱和处理,但gcc没有提供ssat这样的函数,于是不得不在C代码中嵌入汇编指令。
在GPIO的实验中,我们首先编写汇编程序操作寄存器点亮LED,奈何汇编语言可读性和可移植性太差,所以编写启动代码,设置栈顶指针SP,然后调用C语言中的main函数,转入C语言的世界,由C语言访问控制寄存器,点亮LED,程序的可读性和可移植性大大提高,那么,我们可曾想过,在汇编语言中是如何来调用C语言入口函数main呢?
一些对时间要求特别高的时候需要嵌入一些汇编语言,其他时候使用c语言通过位定义和寄存器结构体的方式来实现对dsp寄存器进行访问和控制。
这道理放在C语言学习上也一并受用。在编程方面有着天赋异禀的人毕竟是少数,我们大多数人想要从C语言小白进阶到高手,需要经历的是日积月累的学习。
解题思路:register这个关键字请求编译器尽可能的将变量存在CPU内部寄存器中,而不是通过内存寻址访问,以提高效率。注意是尽可能,不是绝对。因为,如果定义了很多register变量,可能会超过CPU的寄存器个数,超过容量。
GPFDAT的第4位为0-低电平,1-高电平。(注:corresponding,相应的)
源程序实际上就是一个由 0 和 1 组成的位(称为比特)序列,8个位被组成为一组,称为字节。
本实验是在我们基本上掌握DSP中断机制的基础上,进一步学习如何在DSP内部实现定时器的正确操作以及定时器中断服务程序的编写。
之前看了很多关于uboot分析类的文章,其中提到为C语言的运行准备栈。而在uboot start.S汇编代码中,关于系统初始化,也看到栈指针初始化,即正确给栈指针sp赋值,却从来没看到有人解释,为何要这样做。接下来,我试图解释这个问题。
上一篇博客我们简单介绍了Y86指令集体系,而这篇博客我们将介绍指令集体系的逻辑设计和硬件控制语言HCL,为后面去实现Y86打下基础。 在硬件设计中,用电子电路来计算对位进行运算的函数,以及在各
编译器基于编程语言的规则,目标机器的指令集和操作系统遵循的惯例,经过一系列的阶段生成机器代码。GCC c语言编译器以汇编代码的形式产生输出,汇编代码是机器代码的文本表示,给出程序中的每一条指令。然后GCC调用汇编和链接器,根据汇编代码生成可执行的机器代码。这一章节其实就是来更加深入的认识和理解汇编代码
C语言中,++i表示先运算后赋值,i++表示先赋值后运算。这个知识点相信只要会点编程的人都知道。
文章中充斥着大量的寄存器,简单的说下什么是寄存器:寄存器是内置于各个 IP 外设中,是一种用于配置外设功能的存储器,就是一种内存,并且有相对应的地址。
真正的程序设计高手不是语法上的精通而是程序总体架构,算法上的周密。当初大学时都是利用C51写的51单片机的程序,根本就不管程序的可维护性,程序大小c语言程序设计总结心得,就是一个C文件中包含了全部的函数体。在工作中这是一个完全不能接受的习惯和致命错误。
在C程序中嵌入汇编程序可以实现一些高级语言没有的功能,并可以提高执行效率。armcc和armcpp内嵌汇编器支持完整的ARM指令集;tcc和tcpp用于Thumb指集。但是内嵌汇编器并不支持诸如直接修改PC实现跳转的底层功能。
C 语言的发展方向 20世纪80年代初,C 在 UNIX系统的小型机世界中已经是主导语言了,从那时开始,它已经扩展到个人计算机和大型机, 大部分软件开发商公司都选用了 C 语言来开发其子处理程序,电子表格软件,编译器等等。因为他们知道,C 可以产生紧凑而高效的程序。更重要的是,他们知道这些程序易于修改而且易于适应新的计算机模式。 对于公司和熟悉 C 语言的人有帮助的东西,对其他用户同样有帮助。越来越多的计算机用户已转身使用 C 以便利用其优点。不一定非得是计算机专业人员才能使用 C。 而到了20世纪90
如果你是一个嵌入式开发人员,或者是Linux内核研发人员。可能经常会在内核中遇见如下代码:
中,我们分别讨论了大小端模式、Cache和内存序对于移植代码的影响。那么本文,我们再从编程语言的角度,思考一下移植代码时应该注意的事项,尤指底层代码或操作系统代码。
(4) 掌握通过memory/register/watch/variable 窗口分析判断结果。
计算机的发展是很迅猛的,短短的几十年,社会发生了天翻地覆的变化。这也离不开处理器芯片的高速发展。下面就简单的罗列一下处理器芯片的发展历程。
存储类定义C程序中变量和/或函数的范围(可见性)和生命周期。它们位于它们修改的类型之前。我们在C程序中有四种不同的存储变量
>如图:这里我们用 flag 标记了一个循环,编译器在执行这条语句的时候为了对循环进行逻辑判断需要CPU参与,而CPU进行逻辑判断的时候是先将变量 flag 加载到寄存器中,再判断循环条件是否为真,为真再执行循环语句,但是我们这里并没有任何东西能够修改我的循环变量flag的值,也就是是,我们定义了一个死循环,那么,为了将这个循环进行下去,CPU就需要不断地将变量flag从内存加载到寄存器中进行逻辑判断,显然,这样效率很低,所以,为了提高效率,CPU会直接将 flag 放在寄存器中,以后CPU每次检测时直接从寄存器中读取 flag 的值,不再从内存中读取,这种情况也被称为 “内存覆盖”。
绝大多数 Linux 程序员以前只接触过DOS/Windows 下的汇编语言,这些汇编代码都是 Intel 风格的。但在 Unix 和 Linux 系统中,更多采用的还是 AT&T 格式,两者在语法格式上有着很大的不同。
#include <reg51.h>是 c51(用于单片机开发的一种c语言)的头文件。 类似于头文件 AT89X51.h。 这两个头文件基本是一样的,只是在使用时对位的定义不一样, at89x51.h 文件中对 P1.1的操作是写成 P1_1; reg51.h 文件中的操作则写成 P1^1。
1 AT&T 与INTEL的汇编语言语法的区别 1.1大小写 1.2操作数赋值方向 1.3前缀 1.4间接寻址语法 1.5后缀 1.6指令
本篇文章是对C语言中关键字volatile的含义进行了详细的分析介绍,希望能在学习上帮助大家。
4、全局变量全部存放在静态存储区中,在程序开始执行时给全局变量分配存储区,程序执行完毕就释放。
要深入理解goroutine的调度器,就需要对操作系统线程有个大致的了解,因为go的调度系统是建立在操作系统线程之上的,所以接下来我们对其做一个简单的介绍。
我们都知道对于c语言来说,它是需要先转换成汇编语言,然后再生成机器语言的。那么在c语言中,各种条件语句,各种表达式的计算,在汇编中是何如实现的呢?今天我们就来讲解一下。
许多程序员都无法正确理解C语言关键字 volatile,这并不奇怪。因为大多数C语言书籍通常都是一两句一带而过,本文将告诉你如何正确使用它。 在C/C++嵌入式代码中,你是否经历过以下情况:
在C语言中,为了解决类似的问题,我们学习了使用类函数宏来替换这些大量重复使用但又并不复杂的函数,如,将求两数中的最大值的函数改写为类函数宏:
链接可以指定最终生成的可执行文件的起始虚拟地址,我们 指定 内核加载到 0x1500的地方,内核初始化的时候跳转内核要跳转到这个地方。
在之前的《深入理解计算机系统》(CSAPP)读书笔记 —— 第一章 计算机系统漫游文章中提到过计算机的抽象模型,计算机利用更简单的抽象模型来隐藏实现的细节。对于机器级编程来说,其中两种抽象尤为重要。第一种是由指令集体系结构或指令集架构( Instruction Set Architecture,ISA)来定义机器级程序的格式和行为,它定义了处理器状态、指令的格式,以及每条指令对状态的影响。大多数ISA,包括x86-64,将程序的行为描述成好像每条指令都是按顺序执行的,一条指令结束后,下一条再开始。处理器的硬件远比描述的精细复杂,它们并发地执行许多指令,但是可以采取措施保证整体行为与ISA指定的顺序执行的行为完全一致。第二种抽象是,机器级程序使用的内存地址是虚拟地址,提供的内存模型看上去是一个非常大的字节数组。存储器系统的实际实现是将多个硬件存储器和操作系统软件组合起来。
大家周末晚上好,今天给大家分享一些简单的汇编知识;说起汇编,不管是学习或者说工作中,都会或多或少的接触到,比如说学习中,在进入c语言编程世界之前,都会有一段汇编作为引导来进入c的;当然在实际开发当中,现在用汇编来开发的比较少,不是没有;做一为嵌入式软件工程师,我觉得还是非常有必要要掌握一些基本的汇编指令知识的,不要你会写汇编代码,要求自身会分析以.s结尾的文件里面的汇编代码就差不多了,看的懂常规汇编指令就行(这里顺便插一句题外话,我们知道一般ARM都是采用risc架构的,如果有网友对risc-v架构感兴趣的,可以来交流学习),好了,废话就不多说了,开始进入主题啦!
volatile属于C语言的关键字,《C Primer Puls》 是这样解释关键字的:关键字是C语言的词汇,由于编译器不具备真正的智能,所以你必须用编译器能理解的术语表示你的意图。开发者告诉编译器该变量是易变的,无非就是希望编译器去注意该变量的状态,时刻注意该变量是易变的,每次读取该变量的值都重新从内存中读取。(ahhhh,是不是一脸蒙蔽,举个例子吧)
第一代程序员使用机器码 第二代程序员使用汇编 第三代程序员使用C语言 C语言相较于汇编和机器码是一个更高级的语言,我们使用的技术也应该与时俱进 之前控制寄存器是配置GPFCON和GPFDAT寄存器,通过地址访问,所以可以用C语言来进行对地址的访问。
很多程序员都觉得汇编是可怕的编程语言,感觉很难学,繁多的指令,各种寄存器,寻址方式和CPU机制紧密相关,一切都让人望而却步。其实,汇编相对众多编程语言来说,是一门非常简单的语言:它没有奇技淫巧式的语法,也没有各种全家桶式的框架。它之所以显得非常难掌握的原因:
Keil C51是美国Keil Software公司开发的51系列兼容单片机的C语言软件开发系统。
想必能看到这篇文章的小朋友,大都是有一定编程能力的「程序媛、程序猿」。无论,你是从事切图的前端工作,还是对数据有一种爱而不得的后端开发。更甚者,是和底层打交道的嵌入式开发人员。无论你平时在工作环节中,对编程语言API做到如何的得心应手,但是在遇到一些比较「底层」的逻辑和知识时。或多或少,有点「捉襟见肘」。
在C语言中,变量的定义是分配存储空间的过程。一般的,每个变量都具有其独有的存储空间,那么可不可以在同一个内存空间中存储不同的数据类型(不是同事存储)呢?
从事嵌入式开发十几年,对于C语言这门编程语言还算熟悉。C语言的指针是灵魂这是毋容置疑的,因为指针的存在让C语言这门编程语言增加了非常多的灵性,但这其中必须要搞清楚的一个道理,语言的学习在于实践,实践的前提是理解但对于初学者来讲单纯意义上的理解概念也是十分困难的事情,真正能够让自己的编程知识学起来更加的顺畅需要理解的基础上实践,实践完了再回归升华理论,实践最快的方式就是在工作中做实际的项目,早期编程企业要求相对低一些,现在很多企业对于程序员都是要求有经验,所谓的经验就是项目实战。
领取专属 10元无门槛券
手把手带您无忧上云