**分布式存储:**通过网络使用企业中的每台机器上的磁盘空间,并将这些分散的存储资源构成一个虚拟的存储设备,数据分散的存储在企业的各个角落。
最近,留意到 MinIO 官方博客的一篇题为“在对象存储上实现 POSIX 访问接口是坏主意”的文章,作者以 S3FS-FUSE 为例分享了通过 POSIX 方式访问 MinIO 中的数据时碰到了性能方面的困难,性能远不如直接访问 MinIO。在对结果进行分析时,作者认为是 POSIX 本身存在的缺陷导致的性能问题。这个结论与我们既有经验有一定出入。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-90ZtG0tw-1687771442157)(https://juicefs.com/docs/zh/assets/images/juicefs-arch-new-ab6339cb1408945cc9b70dc091c523c5.png)]
**MooseFS(MFS)** **Ceph** **GlusterFS** **Lustre** **Metadata server** 单个MDS。存在单点故障和瓶颈。 多个MDS,不存在单点故障和瓶颈。MDS可以扩展,不存在瓶颈。 无,不存在单点故障。靠运行在各个节点上的动态算法来代替MDS,不需同步元数据,无硬盘I/O瓶颈。 双MDS(互相备份)。MDS不可以扩展,存在瓶颈。 **FUSE** 支持 支持 支持 支持 **访问接口** POSIX POSIX POSIX POSIX/MPI **
根据IDC在2018年底的预测显示,由于大数据、AI、物联网、5G等因素的驱动,全球的数据量在2025年将高达175ZB(1ZB=1024EB,1EB=1024PB)。在中国市场,由于AI技术在安防等领域的大规模落地与应用,IDC预计,中国将在2025年成为拥有数据量最大的地区,甚至超过整个EMEA(欧洲+中东+非洲),其中绝大部分数据是非结构化数据。
文件服务器(file servers)是一种器件,它的功能就是向服务器提供文件。 它加强了存储器的功能,简化了网络数据的管理。 它一则改善了系统的性能,提高了数据的可用性,二则减少了管理的复杂程度,降低了运营费用。
在上一篇云硬盘性能分析的教程中,为大家介绍了如何评测云硬盘的读写性能。但是,我们使用硬盘,从来不是直接读写裸设备,而是通过文件系统来管理和访问硬盘上地文件。不少朋友询问,文件系统该如何对比,又该如何选择呢?
对于一个企业大数据应用来说,搞定了大数据存储基本上就解决了大数据应用最重要的问题。Google 三驾马车的第一驾是GFS,Hadoop最先开始设计的就是HDFS,可见分布式存储的重要性,整个大数据生态计算框架多种多样,但是大数据的存储却没有太大的变化,HDFS依旧是众多分布式计算的基础。当然HDFS也有许多缺点,一些对象存储等技术的出现给HDFS的地位带来了挑战,但是HDFS目前还是最重要的大数据存储技术,新的计算框架想要获得广泛应用依旧需要支持HDFS。大数据数据量大、类型多种多样、快速的增长等特性,那么HDFS是如何去解决大数据存储、高可用访问的了?
Facebook's Haystack design paper. https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Beaver.pdf
本篇文章的作者为龙姐姐说的都队的李晨曦,他们团队在本次 Hackathon 比赛中构建了一个基于 TiKV 的分布式 POSIX 文件系统 TiFS,继承了 TiKV 强大的分区容错和严格一致性特性,为 TiKV 生态开辟了一个新的领域。
文件管理系统中,索引文件结构是一种常见的文件组织方式,它通过索引来实现文件内容的快速访问。在索引文件结构中,主要涉及到几个关键概念:索引结点、物理磁盘块、直接索引、一级间接索引、二级间接索引、三级间接索引。
对于文件系统而言,其读写的效率对整体的系统性能有决定性的影响,本文我们将通过介绍 JuiceFS 的读写请求处理流程,让大家对 JuiceFS 的特性有更进一步的了解。
国内,随着互联网的高速发展,因为各大通信公司的政策,造成了南电信北联通互通有局限性,再加上大小且质量参差不齐的运营商,在这特殊的氛围的互联互通下号称“八线合一”的机房开始崭露头角。互联网的广泛性使得网民分散在全国各地,由于全国地区的经济发展和互联网建设的不平衡,实际网民的体验往往受限于最后一公里的速度。在技术大喷井的年代,一些无聊或者有目的黑客攻击也开始涌现,无论是渗透还是DDoS攻击都非常频繁,时刻威胁着网站的安全…… 上述种种问题,作为应用服务提供商,我们要如何解决此类问题呢?归根结底就是要充分利用好C
背景 计算机硬件性能在过去十年间的发展普遍遵循摩尔定律,通用计算机的CPU主频早已超过3GHz,内存也进入了普及DDR4的时代。然而传统硬盘虽然在存储容量上增长迅速,但是在读写性能上并无明显提升,同时SSD硬盘价格高昂,不能在短时间内完全替代传统硬盘。传统磁盘的I/O读写速度成为了计算机系统性能提高的瓶颈,制约了计算机整体性能的发展。 硬盘性能的制约因素是什么?如何根据磁盘I/O特性来进行系统设计?针对这些问题,本文将介绍硬盘的物理结构和性能指标,以及操作系统针对磁盘性能所做的优化,最后讨论下基于磁盘I/O
会生成一个1000M的test文件,文件内容为全0(因从/dev/zero中读取,/dev/zero为0源)。
文件系统是操作系统中负责管理持久数据的子系统,说简单点,就是负责把用户的文件存到磁盘硬件中,因为即使计算机断电了,磁盘里的数据并不会丢失,所以可以持久化的保存文件。
已有云主机id 27b31829-326f-4029-a537-bb327303a32c
但是这些都是文件被进程打开后才有的操作,那么其余文件呢???在我们的系统中有非常多的文件(一切皆文件),被打开的文件只是一小部分。没有被打开的文件实际上是在磁盘上储存的,也就是磁盘文件。 在打开文件之前,我们需要找到文件 -> 就要从磁盘中找到对应文件 -> 通过文件路径与文件名。
有人问我,你是如何做到统一存储的?我微微一笑,大声告诉他:Ceph在手,天下我有。
XFS 是一种 Linux 日志文件系统,本文记录修改 XFS 系统属性的方法。 XFS XfS文件系统是SGI开发的高级日志文件系统,XFS极具伸缩性,非常健壮。 主要特性 数据完全性 采用XFS文件系统,当意想不到的宕机发生后,首先,由于文件系统开启了日志功能,所以你磁盘上的文件不再会意外宕机而遭到破坏了。不论目前文件系统上存储的文件与数据有多少,文件系统都可以根据所记录的日志在很短的时间内迅速恢复磁盘文件内容。 传输特性 XFS文件系统采用优化算法,日志记录对整体文件操作影响非常小。XFS查询与
这一期我们来看一下有哪些办法可以减少linux下的文件碎片。主要是针对磁盘长期满负荷运转的使用场景(例如http代理服务器);另外有一个小技巧,针对互联网图片服务器,可以将io性能提升数倍。如果为服务器订制一个专用文件系统,可以完全解决文件碎片的问题,将磁盘io的性能发挥至极限。对于我们的代理服务器,相当于把io性能提升到3-5倍。 在现有文件系统下进行优化linux内核和各个文件系统采用了几个优化方案来提升磁盘访问速度。但这些优化方案需要在我们的服务器设计中进行配合才能得到充分发挥。 文件系统缓存lin
当我们在桌面创建一个新的空文件的时候,往往都是一个0字节的空文件,那么这个空文件在不在文件系统中呢?如果在,又是否起到了占位作用呢?
磁盘设备之上是文件系统,测试磁盘的工具往往就是调用块设备驱动的接口进行读写测试。而文件系统的测试软件就是针对文件系统层提供的功能进行测试,包括文件的打开关闭速度以及顺序读写随机位置读写的速度。以及进程并发数目等各个方面进行详细的测试。
借助 ext4 文件系统的 打洞 功能,可以实现一个消息队列 https://gist.github.com/CAFxX/571a1558db9a7b393579
在了解什么是分布式存储之前,我们先来简单了解一下存储几十年来的大概历程。
分布式文件系统 分布式文件系统(Distributed File System)是指文件系统管理的物理存储资源并不直接与本地节点相连,而是分布于计算网络中的一个或者多个节点的计算机上。目前意义上的分布式文件系统大多都是由多个节点计算机构成,结构上是典型的客户机/服务器模式。流行的模式是当客户机需要存储数据时,服务器指引其将数据分散的存储到多个存储节点上,以提供更快的速度,更大的容量及更好的冗余特性。 目前流行的分布式文件系统有许多,如MooseFS、FastDFS、GlusterFS、Ceph、Mogile
随着数据量的不断膨胀,无论是为了扩展存储容量、安全备份还是高效文件传输。外置硬盘都成为了Mac用户不可或缺的存储解决方案。然而,选择合适的硬盘格式是确保数据兼容性与访问便利性的关键一步。下面我们来看看Mac外置硬盘用什么格式,Mac外置硬盘不显示怎么办的相关内容。
记得十几年前还在用早期 Windows 系统的时候,每用一段时间系统都会变得很卡顿,这时候需要打开系统提供的下面的磁盘碎片整理程序,当碎片整理完成后会感觉到系统变得稍微流畅了一些。
说到异步,必然要了解的是async和await这两个关键字(异步详情点击基于任务的异步编程(Task,async,await)这篇文章进行了解),此段讲解对于初学者可以简单涉猎,接下来进入正题,在操作大文件的时候,必然要消耗大量的时间,同步情况下,必然会阻塞程序执行,所以.NET 4.5以后,对FileStream和StreamReader/Writer的读写文件方法加入了异步版本,从而在操作大文件时解放对主线程的阻塞,我们可以通过Async后缀来区分哪是异步的,如FileStream的ReadAsync()是Read()的异步版本。
块存储一般体现形式是卷或者硬盘(比如windows的c盘),数据是按字节来访问的,对于块存储而言,对里面存的数据内容和格式是完全一无所知的。好比上面图中,数据就像玉米粒一样堆放在块存储里,块存储只关心玉米粒进来和出去,不关心玉米粒之间的关系和用途。
Alluxio(/əˈlʌksio/)是大数据和机器学习生态系统中的数据访问层。最初作为研究项目「Tachyon」,它是在加州大学伯克利分校的 AMPLab 作为创建者 2013 年的博士论文创建的。Alluxio 于 2014 年开源。
初次接触分布式文件系统,有很多迷惑。通过参考网络文章,这里进行对比一下Hadoop 分布式文件系统(HDFS)与 传统文件系统之间的关系:
本文为joshua317原创文章,转载请注明:转载自joshua317博客 https://www.joshua317.com/article/165
保存像图片、音视频这类大文件就是对象存储。不仅有很好的大文件读写性能,还可通过水平扩展实现近乎无限容量,并兼顾服务高可用、数据高可靠。
GFS,顾名思义就是谷歌文件系统,和Big Table,Map Reduce并称谷歌三驾马车。 大部分谷歌服务的基石(Search, Cloud Drive, Gmail etc.)
本文大部分内容,摘自docker官方文档.Understand images, containers, and storage drivers
GPL:不允许修改后和衍生的代码做为闭源的商业软件发布和销售,修改后该软件产品必须也采用GPL协议;
Hadoop 附带了一个名为 HDFS(Hadoop Distributed File System, Hadoop分布式文件系统)的分布式文件系统,基于 Hadoop 的应用程序使用 HDFS 。HDFS 是专为存储超大数据文件,运行在集群的商品硬件上。它是容错的,可伸缩的,并且非常易于扩展。
起源于2003年谷歌的Google File System相关论文,随后Doug Cutting(我们下面就叫他切哥吧)基于GFS的论文实现了分布式文件系统,并把它命名为NDFS(Nutch Distributied File System)。
气象领域的数据存储格式大多都是netCDF、HDF、Grib格式,这些文件格式已经发展的比较成熟了,大家也都已经习惯了处理这些格式的文件。但随着数据量的增加以及云计算的发展,这些文件系统已经无法满足需求,针对云计算优化的文件系统应运而生。
来源:马哥教育链接:https://mp.weixin.qq.com/s/UupllldADYE0sHbRs0uouQXfS文件系统是SGI开发的高级日志文件系统,XFS极具伸缩性,非常健壮。所幸的是SGI将其移植到了Linux系统中。在linux环境下。目前版本可用的最新XFS文件系统的为1.2版本,可以很好地工作在2.4核心下。XFS文件系统简介主要特性包括以下几点:数据完全性采用XFS文件系统,当意想不到的宕机发生后,首先,由于文件系统开启了日志功能,所以你磁盘上的文件不再会意外宕机而遭到破坏了。不论目前文件系统上存储的文件与数据有多少,文件系统都可以根据所记录的日志在很短的时间内迅速恢复磁盘文件内容。传输特性XFS文件系统采用优化算法,日志记录对整体文件操作影响非常小。XFS查询与分配存储空间非常快。xfs文件系统能连续提供快速的反应时间。笔者曾经对XFS、JFS、Ext3、ReiserFS文件系统进行过测试,XFS文件文件系统的性能表现相当出众。可扩展性XFS 是一个全64-bit的文件系统,它可以支持上百万T字节的存储空间。对特大文件及小尺寸文件的支持都表现出众,支持特大数量的目录。最大可支持的文件大小为263 = 9 x 1018 = 9 exabytes,最大文件系统尺寸为18 exabytes。XFS使用高的表结构(B+树),保证了文件系统可以快速搜索与快速空间分配。XFS能够持续提供高速操作,文件系统的性能不受目录中目录及文件数量的限制。传输带宽XFS 能以接近裸设备I/O的性能存储数据。在单个文件系统的测试中,其吞吐量最高可达7GB每秒,对单个文件的读写操作,其吞吐量可达4GB每秒。XFS文件系统的使用下载与编译内核下载相应版本的内核补丁,解压补丁软件包,对系统核心打补丁下载地址:ftp://oss.sgi.com/projects/xfs/d … .4.18-all.patch.bz2对核心打补丁,下载解压后,得到一个文件:xfs-1.1-2.4.18-all.patch文件。对核心进行修补如下:# cd /usr/src/linux # patch -p1 < /path/to/xfs-1.1-2.4.18-all.patch修补工作完成后,下一步要进行的工作是编译核心,将XFS编译进Linux核心可中。首先运行以下命令,选择核心支持XFS文件系统:#make menuconfig在“文件系统“菜单中选择:<*> SGI XFS filesystem support ##说明:将XFS文件系统的支持编译进核心或 SGI XFS filesystem support ##说明:以动态加载模块的方式支持XFS文件系统另外还有两个选择:Enable XFS DMAPI ##说明:对磁盘管理的API,存储管理应用程序使用 Enable XFS Quota ##说明:支持配合Quota对用户使用磁盘空间大小管理完成以上工作后,退出并保存核心选择配置之后,然后编译内核,安装核心:#make bzImage #make module #make module_install #make install如果你对以上复杂繁琐的工作没有耐心或没有把握,那么可以直接从SGI的站点上下载已经打好补丁的核心,其版本为2.4.18。它是一个rpm软件包,你只要简单地安装即可。SGI提交的核心有两种,分别供smp及单处理器的机器使用。创建XFS文件系统完成对核心的编译后,还应下载与之配套的XFSprogs工具软件包,也即mkfs.xfs工具。不然我们无法完成对分区的格式化:即无法将一个分区格式化成XFS文件系统的格式。要下载的软件包名称:xfsprogs-2.0.3。将所下载的XFSProgs工具解压,安装,mkfs.xfs自动安装在/sbin目录下。#tar –xvf xfsprogs-2.0.3.src.tar.gz #cd xfsprogs-2.0.3src #./configure #make #make install使用mkfs.xfs格式化磁盘为xfs文件系统,方法如下:# /sbin/mkfs.xfs /dev/sda6 #说明:将分区格式化为xfs文件系统,以下为显示内容: meta-data=/dev/sda6 isize=256 agcount=8, agsize=128017 blks data = bsize=4096 blocks=1024135, imaxpct=25 = sunit=0 swidth=0 blks, unwritten=0 naming =version 2 bsize=4096 log =internal log bsize=4096 blocks=1200 realtime =none
HDFS(Hadoop Distributed File System,Hadoop分布式文件系统)最开始是作为Apache Nutch搜索引擎项目的基础架构而开发的,是Apache Hadoop Core项目的一部分。HDFS被设计为可以运行在通用硬件(commodity hardware)上、提供流式数据操作、能够处理超大文件的分布式文件系统。HDFS具有高度容错、高吞吐量、容易扩展、高可靠性等特征,为大型数据集的处理提供了强有力的工具。
JuiceFS 是一款面向云原生设计的高性能共享文件系统,在 Apache 2.0 开源协议下发布。提供完备的 POSIX 兼容性,可将几乎所有对象存储接入本地作为海量本地磁盘使用,亦可同时在跨平台、跨地区的不同主机上挂载读写。
海量小文件问题是工业界和学术界公认的难题,大数据领域中的小文件问题,也是一个非常棘手的问题,仅次于数据倾斜问题,对于时间和性能能都是毁灭性打击。本文参考网上对于小文件问题的定义和常见系统的解决方案,给大家还原一个大数据系统中小文件问题的系统性解决方案。
Z 文件系统(Z File System)(ZFS)是由 Matthew Ahrens 和 Jeff Bonwick 在 2001 年开发的。ZFS 是作为 太阳微系统(Sun MicroSystem) 公司的 OpenSolaris 的下一代文件系统而设计的。在 2008 年,ZFS 被移植到了 FreeBSD 。同一年,一个移植 ZFS 到 Linux 的项目也启动了。然而,由于 ZFS 是 通用开发和发布许可证 (Common Development and Distribution License)(CDDL)许可的,它和 GNU 通用公共许可证 不兼容,因此不能将它迁移到 Linux 内核中。为了解决这个问题,绝大多数 Linux 发行版提供了一些方法来安装 ZFS。 在甲骨文公司收购太阳微系统公司之后不久,OpenSolaris 就闭源了,这使得 ZFS 的之后的开发也变成闭源的了。许多 ZFS 开发者对这件事情非常不满。 三分之二的 ZFS 核心开发者 ,包括 Ahrens 和 Bonwick,因为这个决定而离开了甲骨文公司。他们加入了其它公司,并于 2013 年 9 月创立了 OpenZFS 这一项目。该项目引领着 ZFS 的开源开发。 让我们回到上面提到的许可证问题上。既然 OpenZFS 项目已经和 Oracle 公司分离开了,有人可能好奇他们为什么不使用和 GPL 兼容的许可证,这样就可以把它加入到 Linux 内核中了。根据 OpenZFS 官网 的介绍,更改许可证需要联系所有为当前 OpenZFS 实现贡献过代码的人(包括初始的公共 ZFS 代码以及 OpenSolaris 代码),并得到他们的许可才行。这几乎是不可能的(因为一些贡献者可能已经去世了或者很难找到),因此他们决定保留原来的许可证。
说明: 0. NAND Flash这块经常有人咨询,这里发布一个完整的解决方案,支持擦写均衡,坏块管理,ECC和掉电保护。 早期的时候我们是用的自己做的NAND算法,支持滑块管理,擦写均衡,实际测试效果不够好,容易出问题,所以放弃了。 1. 此例子仅支持MDK4.74版本,因为RTX,RL-FlashFS,RL-USB都是来自MDK4.74的安装目录,使用MDK4.74才是最佳组合。 2. RL-FlashFS本身支持擦写均衡,坏块管理,ECC和掉电保护。其中使用掉电保护的话,请开启配置文件中的FAT Journal。 3. 在前几年的时候,有客户反应使用RL-FlashFS写入文件多后会写入越来越慢,原因是没有正确配置,加大文件名缓冲个数即可。 4. 当前使用的短文件名的库,使用长文件名的话请更换为长文件名的库,也在MDK的安装目录里面。 5. RL-FlashFS是FAT兼容的文件系统,也就是说可以在window系统上面模拟U盘,提供的程序代码已经做了支持。 6. RL-FlashFS的文件名仅支持ASCII,不支持中文,这点要特别注意。 7. 首次格式化后使用,读速度2.3MB/S左右,写速度3.2MB/S左右,配置不同的文件系统缓冲大小,速度有区别。 8. RL-FlashFS的函数是标准的C库函数,跟电脑端的文件系统使用方法一样。 9. RL-FlashFS与FatFS的区别,FatFS仅是一个FAT类的文件件系统,擦写均衡,坏块管理,ECC和掉电保护都不支持。 这些都需要用户自己去实现。 10. UFFS,YAFFS这两款文件系统是不兼容FAT的,也就是无法在Windows端模拟U盘。 当前NAND的配置如下:
什么是VFS? Linux内核使用工厂的设计模式抽象出实际文件系统统一接口,这个就是虚拟文件系统(VFS),根据应用程序调用虚拟文件系统接口,根据不同的文件系统类型(xfs/zfs/ext4)来调用实
领取专属 10元无门槛券
手把手带您无忧上云