首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    算法卷不动了,最后一个值得卷的百万年薪赛道!

    众所周知,深度神经网络模型被广泛应用在图像分类、物体检测,目标跟踪等计算机视觉任务中,并取得了巨大成功。 随着不同场景的需求变得更加多样,越来越多的IoT设备和场景需要与数据采集点以最接近的低时延来进行决策和操作;另外IoT物联设备生成的数据量通常很大,由于运营成本、时间和隐私方面的考虑,移动和存储所有生成的数据不太可行。 AI技术的一个趋势是在设备端上部署高性能的神经网络模型,并在真实场景中实时运行。如移动端/嵌入式设备,这些设备的特点是内存资源少,处理器性能不高,功耗受限,这使得目前精度最高的模型根本

    02

    Python的GPU编程实例——近邻表计算

    GPU加速是现代工业各种场景中非常常用的一种技术,这得益于GPU计算的高度并行化。在Python中存在有多种GPU并行优化的解决方案,包括之前的博客中提到的cupy、pycuda和numba.cuda,都是GPU加速的标志性Python库。这里我们重点推numba.cuda这一解决方案,因为cupy的优势在于实现好了的众多的函数,在算法实现的灵活性上还比较欠缺;而pycuda虽然提供了很好的灵活性和相当高的性能,但是这要求我们必须在Python的代码中插入C代码,这显然是非常不Pythonic的解决方案。因此我们可以选择numba.cuda这一解决方案,只要在Python函数前方加一个numba.cuda.jit的修饰器,就可以在Python中用最Python的编程语法,实现GPU的加速效果。

    02

    告别一步一步来,你们一起上好了

    随着互联网的高速发展,企业的数字化改革与精细化运营,均对数据库能力提出了越来越高的要求,数据分析能力、异构数据处理能力等愈发重要。公司各类报表整合,年终数据盘点,分析预测等越来越多的业务开始需要进行复杂查询。 并且,爆炸性的数据量增长也使得传统的数据库能力难以应对。企业的很多业务将对数据的实时性和效率性要求越来越高,想一想你的企业是否也是这样: 想!更早更快的在数据中识别和阻断漏洞,保证业务平稳运行; 想!更快更准的定位数据,提升服务效率; 想!更多更丰富的指标和计算口径,实现业务的快速增长; 但,多数的

    02

    深度学习模型压缩与加速综述

    目前在深度学习领域分类两个派别,一派为学院派,研究强大、复杂的模型网络和实验方法,为了追求更高的性能;另一派为工程派,旨在将算法更稳定、高效的落地在硬件平台上,效率是其追求的目标。复杂的模型固然具有更好的性能,但是高额的存储空间、计算资源消耗是使其难以有效的应用在各硬件平台上的重要原因。所以,卷积神经网络日益增长的深度和尺寸为深度学习在移动端的部署带来了巨大的挑战,深度学习模型压缩与加速成为了学术界和工业界都重点关注的研究领域之一。本文主要介绍深度学习模型压缩和加速算法的三个方向,分别为加速网络结构设计、模型裁剪与稀疏化、量化加速。

    04

    科学瞎想系列之一一二 NVH那些事(15)

    上一期讲了声波的一些传播特性,本期讲一讲声波的起源。众所周知,振动产生噪声,也就是说声波是由振动引起的,那么自然就会提出一个问题——振动和噪声的关系问题。即在介质的某处,若已知质点的振动,如何推算和评估所产生的噪声,或已知某处的噪声如何得知该点的振动。 1 振动与噪声的定量换算 我们知道,描述振动的特征量包括频率、振动位移、振动速度和振动加速度;描述噪声的特征量包括频率、声压、声强和声功率以及反映声音响度的声压级、声强级、声功率级等声级指标,振动作为噪声之母,振动和因之引起的噪声的频率自然就是一样的,这是它们之间的“遗传代码” 是它们的DNA,工程实践中也经常会用噪声的频谱来分析寻找振动源,这个不用换算。这里主要讲的是振动速度、加速度和噪声的声压、声强之间的换算关系,现就平面声波做一介绍。 假设介质中存在一个无穷大平面的振动,我们可以把它看作是一个无穷大平面的活塞在往复运动(振动),其振动的频率为f,振动的位移随时间按正弦规律变化,就会在介质中产生一个平面声波,设声波沿x轴方向传播,其波动方程为: y=Y•sin(ωt-Kx) ⑴ 式中:y为在x处的质点振动位移;Y为振幅;x为质点位置;ω为振动角频率,ω=2πf=2π/T,T为振动的周期;系数K=2π/λ,λ为声波的波长。则声速: C=ω/K=λ•f ⑵ 而振动速度为: y′=Эy/Эt=ω•Y•cos(ωt-Kx) ⑶ 振动速度的幅值: Y′=ω•Y ⑷ 由⑵、⑷式可见,振动速度和声速是两码事,二者不能混淆。振动形成的压强(声压)为: p=-E•ΔV/V=-E•Эy/Эx ⑸ 式中:E为介质的弹性模量,即介质中的应力与应变之比 ,它是材料的固有参数;ΔV/V为介质因受压力的变化而产生的体积变化率,数值上ΔV/V=Эy/Эx。 将⑴式代入⑸式得: p=E•K•Y•cos(ωt-Kx) =Pm•cos(ωt-Kx) ⑹ 式中:Pm=E•K•Y为最大声压。 我们知道,声强为单位面积上的声功率,而功率等于力与速度乘积,即声强等于单位面积上的压力(声压)乘以质点的振动速度,即声强: i=p•y′ =ω•E•K•Y²•cos²(ωt-Kx) ⑺ 平均声强为: I=(1/2)•ω•E•K•Y² =(1/2)•ω•Pm²/(E•K) ⑻ 将声速C=(E/ρ)^(1/2)代入⑻式,得: I=(1/2)•Pm²/(ρ•C) = P²/(ρ•C) ⑼ 式中:P为声压的有效值,即方均根值;ρ为介质的密度;ρ•C为介质的声学特性阻抗,20℃下空气的ρ•C=408 kg/(m²•s)。 综合以上各式,可得无穷大平面声波声强与振动的关系为: I=(1/2)•ω•E•K•Y² =(1/2)•2πf•C•ρ•(2π/λ)•Y² =2ρCπ²f²Y² =816π²f²Y² ⑽ 由⑽式可见,无穷大平面声波的声强与振动速度(f•Y)的平方成正比,由于声强是指单位面积上的声功率,代表了声波传递的能量,这就得出了我们前面所说的,振动速度是反映伴振动的能量。需要特别强调一下,⑽式是基于无穷大平面振动推导得到的振动与噪声的关系,适用于平面型辐射器,例如:当电机的尺寸远大于声波波长时,就可以把电机看作是一个平面型辐射器。对于其它类型的声波辐射器(如中小型电机)不适用,需要进行一定的修正(后续文章会详述),但⑽式是基础,是一个非常重要的公式,希望宝宝们牢记,后面还会经常用到。 这样枯燥的推导可能宝宝们很难直观感受多大的振动能够引起多大的噪声,为此我们举个例子来直观感受一下: 设一个振幅为Y=10^(-10)米、f=1000Hz的振动,则可以引起的声强为: I=816•π²•1000²•10^(-20) =8.05*10^(-11) 瓦/米² 其声强级为: Li=10•lg[8.05*10^(-11)/10^(-12)]=19.05dB。 也就是说当空气的振幅为1/10纳米(相当于分子直径级别的振幅)时,就会产生19.05dB的噪声,人耳可以清晰地听到。对于电机机壳的振动,通常振幅在微米级,假设是1微米吧,如果频率仍然是1000Hz,那么产生的声强为8.05*10^(-3)瓦/米²,对应的声强级可达99dB(A),99分贝是个什么概念啊,大概是在歌舞厅距离音响1米处的噪声,达到了非常吵闹的环境级别,我国环境标准规定在这样的环境中,每天不得超过一刻到半个小时,否则经过二三十年的长期暴露,会严重损伤听觉!由此可见只要频率较高(中频),微小的振动都会引起强烈的噪声。 2 振动和噪声的关系 上面

    02
    领券