矩阵乘法加速器,一般至少包括计算单元,缓存(SRAM等构成)和内存(譬如DDR等)。其中缓存的读写速率较高,可以和计算单元的运算速度相匹配,但容量较小;内存的容量相对缓存较大,但读写速率较低。
【本系列文章为山东大学郭阳教授《量子化学软件基础》课程的习题报告,涉及ORCA、BDF、Gaussian等量子化学软件的使用,在此分享给大家。】
利用高层次综合工具,开发者只需要编写高级语言的代码完成程序功能,就能将高级语言编写的代码综合成相同功能的 RTL 级实现 (基于 Verilog 或 VHDL)。开发者还可以通过添加一些 pragma 的方式来指示和调整高层次综合工具生成的硬件模块的架构。整体而言,利用高层次综合工具进行 FPGA 硬件开发的过程,应该是利用软件语言的表达来描述硬件模块的过程。目前,高层次综合的代码都是基于 C/C++/OpenCL 的,所以对于没有硬件设计基础的朋友来说,利用高层次综合工具可以大幅度地降低学习难度,缩短开发周期,加快设计迭代速度。
python是一门高效动态编程语言,由于其采用简洁明了的语法以及灵活性深受大家欢迎。但是,这既是它最大的优势,也是最大的劣势。它的灵活性和无类型的高级语法可能会导致数据和计算密集型程序的性能不佳,因为运行本地编译代码要比运行动态解释代码快很多倍。
随着大数据的发展,计算机芯片算力的提升,人工智能近两年迎来了新一轮的爆发。而人工智能实现超级算力的核心就是AI芯片。AI芯片也被称为人工智能加速器,即专门用于处理人工智能应用中的大量计算任务的模块。 2020年我国人工智能芯片市场规模约为184亿元。未来5G商用的普及将继续催生人工智能芯片的应用需求,中国人工智能芯片行业将快速发展,预计2023年市场规模将突破千亿元。 那么,如何借助AI芯片来实现特定的任务,将是所有AI芯片产业人员必备的技能。 为此,贪心学院重磅推出《高性能神经网络与AI芯片应用研修课程》
流水线技术是一种重要的计算机组成与设计中的性能提升技术。它将一个任务分解为多个子任务,每个子任务在流水线的不同阶段并行执行。这种设计可以显著提高计算机的工作效率和吞吐率。
本文将探讨GPU开发实践,重点关注使用GPU的AI技术场景应用与开发实践。首先介绍了GPU云服务器在AIGC和工业元宇宙中的重要作用,然后深入讨论了GPU在AI绘画、语音合成等场景的应用以及如何有效地利用GPU进行加速。最后,总结了GPU并行执行能力的优势,如提高算力利用率和算法效率,卷积方式处理效率更高,现场分层分级匹配算法计算和交互,超配线程掩盖实验差距,以及tensor core增加算力峰值等。
專 欄 ❈PytLab,Python 中文社区专栏作者。主要从事科学计算与高性能计算领域的应用,主要语言为Python,C,C++。熟悉数值算法(最优化方法,蒙特卡洛算法等)与并行化 算法(MPI,OpenMP等多线程以及多进程并行化)以及python优化方法,经常使用C++给python写扩展。 blog:http://ipytlab.com github:https://github.com/PytLab ❈ 前言 本文中作者使用MPI的Python接口mpi4py来将自己的遗传算法框架GAFT进行多
系统性能设计中的一个重要概念是阿姆达尔定律(Amdahl’s Law)。阿姆达尔定律是由吉恩·阿姆达尔(Gene Amdahl)在1967年提出的,用于评估系统性能提升的理论上限,特别是在考虑并行计算时。该定律表明,系统性能提升的潜力受到系统中可并行化部分的限制。
深度学习的发展过程中,较高的计算量是制约其应用的因素之一。卷积神经网络中,主要计算为三维的卷积计算(后简称为卷积),现有的主流处理器难以高性能,高效能的完成卷积计算。相比一般的通用计算,卷积计算中存在的大量数据复用以及计算的规则性,在硬件的微架构(后简称为架构)设计和计算优化上有很大的优化空间,由此诞生了众多针对深度学习加速的AI芯片。卷积计算过程可以表示如下
众所周知,深度神经网络模型被广泛应用在图像分类、物体检测,目标跟踪等计算机视觉任务中,并取得了巨大成功。 随着不同场景的需求变得更加多样,越来越多的IoT设备和场景需要与数据采集点以最接近的低时延来进行决策和操作;另外IoT物联设备生成的数据量通常很大,由于运营成本、时间和隐私方面的考虑,移动和存储所有生成的数据不太可行。 AI技术的一个趋势是在设备端上部署高性能的神经网络模型,并在真实场景中实时运行。如移动端/嵌入式设备,这些设备的特点是内存资源少,处理器性能不高,功耗受限,这使得目前精度最高的模型根本
今天,“计算机视觉战队”给大家继续分享目标检测综述,今天主要说说目标检测算法的快速发展。
之前的文章《源代码如何被计算机执行》已经提到计算机只能执行二进制的机器码,C、C++等编译型语言依靠编译器将源代码转化为可执行文件后才能运行,Python、Java等解释型语言使用解释器将源代码翻译后在虚拟机上执行。对于Python,由于解释器的存在,其执行效率比C语言慢几倍甚至几十倍。
加速目标检测一直是一个重要而又具有挑战性的问题。在过去的20年里,目标检测领域已经发展了复杂的加速技术。这些技术大致可以分为 “ 检测管道提速 ”、“ 检测引擎提速 ” 和 “ 数值计算提速 ” 三个层次,如下图所示。
该论文主要围绕着深度学习应用对密集矩阵乘法(Matrix Multiply, MM)的大量需求展开。随着深度学习模型的复杂度不断增加,对计算资源的需求也日益增长,这促使了异构架构的兴起,这类架构结合了FPGA(现场可编程门阵列)和专用ASIC(专用集成电路)加速器,旨在应对高计算需求。
众所周知深度神经网络模型被广泛应用在图像分类、物体检测,目标跟踪等计算机视觉任务中,并取得了巨大成功。 然而随着时代发展,人们更加关注深度神经网络的实际应用性能,人工智能技术的一个趋势是在边缘端平台上部署高性能的神经网络模型,并能在真实场景中实时(>30帧)运行。 如移动端/嵌入式设备,这些平台的特点是内存资源少,处理器性能不高,功耗受限,这使得目前精度最高的模型根本无法在这些平台进行部署和达到实时运行。 由于存储空间和算力资源限制,神经网络模型在移动设备和嵌入式设备上的存储与计算仍然是一个巨大的挑战。
GPU加速是现代工业各种场景中非常常用的一种技术,这得益于GPU计算的高度并行化。在Python中存在有多种GPU并行优化的解决方案,包括之前的博客中提到的cupy、pycuda和numba.cuda,都是GPU加速的标志性Python库。这里我们重点推numba.cuda这一解决方案,因为cupy的优势在于实现好了的众多的函数,在算法实现的灵活性上还比较欠缺;而pycuda虽然提供了很好的灵活性和相当高的性能,但是这要求我们必须在Python的代码中插入C代码,这显然是非常不Pythonic的解决方案。因此我们可以选择numba.cuda这一解决方案,只要在Python函数前方加一个numba.cuda.jit的修饰器,就可以在Python中用最Python的编程语法,实现GPU的加速效果。
这种种控制方式的特点是:控制简单、实现容易、价格较低,这种开环控制方式,负载位置对控制电路没有反馈。
当在使用深度学习框架如TensorFlow、PyTorch等进行GPU加速计算时,有时你可能会遇到 CUDNN_STATUS_NOT_INITIALIZED 的错误。这个错误通常是由于一些基础设置或配置问题引起的,下面将介绍解决这个问题的几种方法。
在过去的几年里,每个月都会发布新的机器学习加速器,用于语音识别、视频对象检测、辅助驾驶和许多数据中心应用。
最后一页没画,但是基本上就是Filter Matrix乘以Feature Matrix的转置,得到输出矩阵Cout x (H x W),就可以解释为输出的三维Blob(Cout x H x W)。
概述 在手机客户端尤其是Android应用的开发过程中,我们经常会接触到“硬件加速”这个词。由于操作系统对底层软硬件封装非常完善,上层软件开发者往往对硬件加速的底层原理了解很少,也不清楚了解底层原理的意义,因此常会有一些误解,如硬件加速是不是通过特殊算法实现页面渲染加速,或是通过硬件提高CPU/GPU运算速率实现渲染加速。 本文尝试从底层硬件原理,一直到上层代码实现,对硬件加速技术进行简单介绍,其中上层实现基于Android 6.0。 硬件加速对App开发的意义 对于App开发者,简单了解硬件加速原理及
概述 在手机客户端尤其是Android应用的开发过程中,我们经常会接触到“硬件加速”这个词。由于操作系统对底层软硬件封装非常完善,上层软件开发者往往对硬件加速的底层原理了解很少,也不清楚了解底层原理的意义,因此常会有一些误解,如硬件加速是不是通过特殊算法实现页面渲染加速,或是通过硬件提高CPU/GPU运算速率实现渲染加速。 本文尝试从底层硬件原理,一直到上层代码实现,对硬件加速技术进行简单介绍,其中上层实现基于Android 6.0。 硬件加速对App开发的意义 对于App开发者,简单了解硬件加速原理及上层
在手机客户端尤其是Android应用的开发过程中,我们经常会接触到“硬件加速”这个词。由于操作系统对底层软硬件封装非常完善,上层软件开发者往往对硬件加速的底层原理了解很少,也不清楚了解底层原理的意义,因此常会有一些误解,如硬件加速是不是通过特殊算法实现页面渲染加速,或是通过硬件提高CPU/GPU运算速率实现渲染加速。 本文尝试从底层硬件原理,一直到上层代码实现,对硬件加速技术进行简单介绍,其中上层实现基于Android 6.0。 了解硬件加速对App开发的意义 对于App开发者,简单了解硬件加速原理及上层A
其实前面讲算法的文章,也有提到过。比如适用于双向队列的 deque,以及在合适的条件下运用 bisect 和 heapq 来提升算法的性能。
随着嵌入式系统越来越复杂,对性能和灵活性的需求也越来越高。FPGA(Field Programmable Gate Array)作为一种可编程逻辑器件,在嵌入式系统中扮演着越来越重要的角色。本文将重点介绍FPGA在嵌入式系统中的加速、定制与灵活性的优势,并通过代码实例和深度内容进行阐述。
曾经 Fortran和C一直是高性能计算(HPC)的默认编程语言。这两种语言都提供了可以和操作系统内存以及硬件进行交互的基础类型和函数,从而在响应时间和资源使用方面产生高效的代码。然而,对这两种语言而言,如何生成可维护和可扩展的代码是一个真正的挑战。
随着互联网的高速发展,企业的数字化改革与精细化运营,均对数据库能力提出了越来越高的要求,数据分析能力、异构数据处理能力等愈发重要。公司各类报表整合,年终数据盘点,分析预测等越来越多的业务开始需要进行复杂查询。 并且,爆炸性的数据量增长也使得传统的数据库能力难以应对。企业的很多业务将对数据的实时性和效率性要求越来越高,想一想你的企业是否也是这样: 想!更早更快的在数据中识别和阻断漏洞,保证业务平稳运行; 想!更快更准的定位数据,提升服务效率; 想!更多更丰富的指标和计算口径,实现业务的快速增长; 但,多数的
微软刚刚开源了Transformer的突破性优化,大大提升了CPU和GPU上的推理速度。
在使用CUDA加速库时,特别是在使用CUBLAS库进行GPU加速的线性代数运算时,有时我们可能会遇到CUBLAS_STATUS_NOT_INITIALIZED错误。这个错误通常表示CUBLAS库未正确初始化导致的问题。在本篇文章中,我们将深入探讨这个错误的原因,并给出解决方法。
如下图所示,假设该装置使用步进电机实现物体X的移动,系统要求物体X从A点出发,到B点停止,移动的时间越短越好且系统稳定。
ROS1从kinetic之后,生态非常成熟,但是由于ROS1内核设计比较早,不能高效稳定地适应分布并行和实时等应用,存在缺陷,从melodic和noetic之后,一直是ROS1和ROS2并存地状态。
12月11日,2021年腾讯犀牛鸟精英科研人才培养计划正式对外发布。计划截止申报时间为2021年1月28日24:00。 本年度犀牛鸟精英计划首次发布(试运行)“犀牛鸟精英工程人才培养计划”,该计划由校/院级教学组织推荐学生及指导老师组队申报,入选团队及学生将借助产业真实问题和实战平台,深度参与推进技术在产业场景中应用落地。 首次试运行共发布8项课题,其中包含腾讯微信、地图、安全等与日常生活紧密相关的核心产品及技术领域。 本文推送计划中后四个课题内容: 课题五AI模型推理加速系统化工程; 课题六基于WeMa
近日,腾讯云原生数据库 TDSQL-C 发布列存索引(Column store Index)能力,这一企业级特性将大幅提高用户在使用数据库进行复杂查询时的速度,并降低数据存储空间的使用。
官方文档:http://numba.pydata.org/numba-doc/latest/reference/pysupported.html
目前在深度学习领域分类两个派别,一派为学院派,研究强大、复杂的模型网络和实验方法,为了追求更高的性能;另一派为工程派,旨在将算法更稳定、高效的落地在硬件平台上,效率是其追求的目标。复杂的模型固然具有更好的性能,但是高额的存储空间、计算资源消耗是使其难以有效的应用在各硬件平台上的重要原因。所以,卷积神经网络日益增长的深度和尺寸为深度学习在移动端的部署带来了巨大的挑战,深度学习模型压缩与加速成为了学术界和工业界都重点关注的研究领域之一。本文主要介绍深度学习模型压缩和加速算法的三个方向,分别为加速网络结构设计、模型裁剪与稀疏化、量化加速。
大侠好,欢迎来到FPGA技术江湖,江湖偌大,相见即是缘分。大侠可以关注FPGA技术江湖,在“闯荡江湖”、"行侠仗义"栏里获取其他感兴趣的资源,或者一起煮酒言欢。“煮酒言欢”进入IC技术圈,这里有近50个IC技术公众号。
上一期讲了声波的一些传播特性,本期讲一讲声波的起源。众所周知,振动产生噪声,也就是说声波是由振动引起的,那么自然就会提出一个问题——振动和噪声的关系问题。即在介质的某处,若已知质点的振动,如何推算和评估所产生的噪声,或已知某处的噪声如何得知该点的振动。 1 振动与噪声的定量换算 我们知道,描述振动的特征量包括频率、振动位移、振动速度和振动加速度;描述噪声的特征量包括频率、声压、声强和声功率以及反映声音响度的声压级、声强级、声功率级等声级指标,振动作为噪声之母,振动和因之引起的噪声的频率自然就是一样的,这是它们之间的“遗传代码” 是它们的DNA,工程实践中也经常会用噪声的频谱来分析寻找振动源,这个不用换算。这里主要讲的是振动速度、加速度和噪声的声压、声强之间的换算关系,现就平面声波做一介绍。 假设介质中存在一个无穷大平面的振动,我们可以把它看作是一个无穷大平面的活塞在往复运动(振动),其振动的频率为f,振动的位移随时间按正弦规律变化,就会在介质中产生一个平面声波,设声波沿x轴方向传播,其波动方程为: y=Y•sin(ωt-Kx) ⑴ 式中:y为在x处的质点振动位移;Y为振幅;x为质点位置;ω为振动角频率,ω=2πf=2π/T,T为振动的周期;系数K=2π/λ,λ为声波的波长。则声速: C=ω/K=λ•f ⑵ 而振动速度为: y′=Эy/Эt=ω•Y•cos(ωt-Kx) ⑶ 振动速度的幅值: Y′=ω•Y ⑷ 由⑵、⑷式可见,振动速度和声速是两码事,二者不能混淆。振动形成的压强(声压)为: p=-E•ΔV/V=-E•Эy/Эx ⑸ 式中:E为介质的弹性模量,即介质中的应力与应变之比 ,它是材料的固有参数;ΔV/V为介质因受压力的变化而产生的体积变化率,数值上ΔV/V=Эy/Эx。 将⑴式代入⑸式得: p=E•K•Y•cos(ωt-Kx) =Pm•cos(ωt-Kx) ⑹ 式中:Pm=E•K•Y为最大声压。 我们知道,声强为单位面积上的声功率,而功率等于力与速度乘积,即声强等于单位面积上的压力(声压)乘以质点的振动速度,即声强: i=p•y′ =ω•E•K•Y²•cos²(ωt-Kx) ⑺ 平均声强为: I=(1/2)•ω•E•K•Y² =(1/2)•ω•Pm²/(E•K) ⑻ 将声速C=(E/ρ)^(1/2)代入⑻式,得: I=(1/2)•Pm²/(ρ•C) = P²/(ρ•C) ⑼ 式中:P为声压的有效值,即方均根值;ρ为介质的密度;ρ•C为介质的声学特性阻抗,20℃下空气的ρ•C=408 kg/(m²•s)。 综合以上各式,可得无穷大平面声波声强与振动的关系为: I=(1/2)•ω•E•K•Y² =(1/2)•2πf•C•ρ•(2π/λ)•Y² =2ρCπ²f²Y² =816π²f²Y² ⑽ 由⑽式可见,无穷大平面声波的声强与振动速度(f•Y)的平方成正比,由于声强是指单位面积上的声功率,代表了声波传递的能量,这就得出了我们前面所说的,振动速度是反映伴振动的能量。需要特别强调一下,⑽式是基于无穷大平面振动推导得到的振动与噪声的关系,适用于平面型辐射器,例如:当电机的尺寸远大于声波波长时,就可以把电机看作是一个平面型辐射器。对于其它类型的声波辐射器(如中小型电机)不适用,需要进行一定的修正(后续文章会详述),但⑽式是基础,是一个非常重要的公式,希望宝宝们牢记,后面还会经常用到。 这样枯燥的推导可能宝宝们很难直观感受多大的振动能够引起多大的噪声,为此我们举个例子来直观感受一下: 设一个振幅为Y=10^(-10)米、f=1000Hz的振动,则可以引起的声强为: I=816•π²•1000²•10^(-20) =8.05*10^(-11) 瓦/米² 其声强级为: Li=10•lg[8.05*10^(-11)/10^(-12)]=19.05dB。 也就是说当空气的振幅为1/10纳米(相当于分子直径级别的振幅)时,就会产生19.05dB的噪声,人耳可以清晰地听到。对于电机机壳的振动,通常振幅在微米级,假设是1微米吧,如果频率仍然是1000Hz,那么产生的声强为8.05*10^(-3)瓦/米²,对应的声强级可达99dB(A),99分贝是个什么概念啊,大概是在歌舞厅距离音响1米处的噪声,达到了非常吵闹的环境级别,我国环境标准规定在这样的环境中,每天不得超过一刻到半个小时,否则经过二三十年的长期暴露,会严重损伤听觉!由此可见只要频率较高(中频),微小的振动都会引起强烈的噪声。 2 振动和噪声的关系 上面
OpenCV是计算机视觉领域使用最为广泛的开源库,以功能全面使用方便著称。自3.3版本开始,OpenCV加入了对深度神经网络(DNN)推理运算的支持。在LiveVideoStack线上交流分享中英特尔
背景介绍 互联网多媒体技术的普及使数字视频得到了广泛的应用,更大分辨率、更高清晰度的视频逐渐进入人们的生活。传统视频编码标准如ITU(国际电信联盟)和ISO/IEC(国际标准化组织/国际电工委员会)共同制定的H.264/AVC标准针对大分辨率视频,如2K、4K等,压缩性能不够优良。其下一代标准高效视频编码(HEVC, High Efficiency Video Coding)编码标准相对于H.264/AVC有50%的压缩率提升,更适合大分辨率视频的压制,也因此成为目前主流的国际标准。国内自主研制的标准包括A
时刻的运动方程,因此是一种显式格式。欧拉法由前一步的已知值可求下一步的值,故为一步法,可以自起步(self-starting)。但是欧拉法在位移表达式中只保留了
摘要:本文通过在GPU云服务器上部署和配置MySQL数据库,并使用RAPIDS GPU数据处理库进行加速,来详细阐述如何利用GPU强大的并行计算能力,加速MySQL数据库的查询和分析操作,使其比传统CPU实现获得数倍的性能提升。
Python 的运行速度确实没有 C 或者 Java 快,但是有一些项目正在努力让 Python 变得更快。
坚固的边缘计算机是工业级的坚固型计算机,经过专门设计和制造,可以承受在易变环境中的部署。通过坚固的功能和设计,它们具有很高的耐用性。从外部外壳到内部组件的所有内容都经过测试和验证,可以在最不稳定的环境中可靠地运行。
大数据文摘授权转载自AI科技评论 作者:包永刚 英伟达(Nvidia)一年一度的GTC大会如期而至,两年一更新的GPU架构Hopper也正式亮相。 今年,NVIDIA创始人兼CEO黄仁勋在英伟达新总部大楼发布了一系列新品,从新架构GPU H100,到Grace CPU 超级芯片,再到汽车、边缘计算的硬件新品,以及全面的软件更新。 英伟达的全新发布再次向外界宣告,英伟达不止是一家芯片公司,而是全栈计算公司。他们正在加强其在AI、汽车等领域的领导力,同时也在努力占领下一波AI浪潮以及元宇宙的先机。 当然,作为一
你是不是曾经有这样的苦恼,python 真的太好用了,但是它真的好慢啊(哭死) ; C++ 很快,但是真的好难写啊,此生能不碰它就不碰它。老天啊,有没有什么两全其美的办法呢?俗话说的好:办法总是比困难多,大家都有这个问题,自然也就有大佬来试着解决这个问题,这就请出我们今天的主角: numba
http://www.tensorinfinity.com/paper_167.html
领取专属 10元无门槛券
手把手带您无忧上云