MySQL索引(index): 是帮助MySQL高效获取数据的数据结构,所以索引的本质就是数据结构!
MySQL中90%的慢Sql都可以通过索引来得到优化,为什么索引可以使Sql变的更快,我们需要先了解下MySQL InnoDB都有哪些索引。
本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题。特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等。为了避免混乱,本文将只关注于BTree索引,因为这是平常使用MySQL时主要打交道的索引,至于哈希索引和全文索引本文暂不讨论。 文章主要内容分为三个部分。
MySQL的索引是一种数据结构,它可以帮助数据库系统更有效地检索数据。通过创建索引,可以显著提高查询性能,特别是对于大型数据集。索引的工作方式类似于书籍的目录:而不是搜索整个数据库来找到特定的信息,数据库系统可以使用索引直接定位到存储所需数据的位置。
如果要查“mysql”这个单词,我们肯定需要定位到m字母,然后从下往下找到y字母,再找到剩下的sql。如果没有索引,那么你可能需要把所有单词看一遍才能找到你想要的。
Mysql索引原理深入剖析 1. 索引是一种数据结构,能够提高数据的检索速度。 栗子:从如下数据中找出所有为2的数据:1,3,2,5,7,9,2,5,6? 无索引:由于数据是没有顺序的就只能通过顺序查找的方式一个一个的查找比对。 有索引:会先将数据排序,排序后为1,2,2,3,5,5,6,7,9,这个时候就不用顺序查找了,顺序查找效率也不高,这个时候我们就可以使用比较高效的二分法查找了,所以速度一定比顺序查找快。 2. 结合上面例子可以引出索引的特点:排好序,快速查找,数据结构(mysql里
在MySQL中,索引(index)也叫做“键(key)”,它是存储引擎用于快速找到记录的一种数据结构。
今天我们来说一下我们的mysql,个人认为现在的mysql能做到很好的优化处理,不比收费的oracle差,而且mysql确实好用。
通常在B+Tree上有两个头指针,一个指向根节点,另一个指向关键字最小的叶子节点,而且所有叶子节点(即数据节点)之间是一种链式环结构。因此可以对B+Tree进行两种查找运算:
索引的数据结构和具体存储引擎的实现有关,在 MySQL 中使用较多的索引有 Hash 索引,B+树索引等,而我们经常使用的 InnoDB 存储引擎的默认索引实现为:B+树索引。对于哈希索引来说,底层的数据结构就是哈希表,因此在绝大多数需求为单条记录查询的时候,可以选择哈希索引,查询性能最快;其余大部分场景,建议选择 BTree 索引。
本文为《数据密集型应用系统设计》的读书笔记第一部分第三章的笔记整理,也是个人认为的这本书第一部分最重要的内容。本文将会针对目前数据库系统两个主要阵营进行展开,分别是采用日志型存储结构高速读写的LSM-Tree和面向OLTP的事务数据库BTree两种数据结构对比。
字符集指的是一种从二进制编码到某类字符符号的映射。校对规则则是指某种字符集下的排序规则。
索引index:是帮助 Mysql 高效获取数据 的 有序的数据结构,在数据之外,数据库系统维护着的满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引
译注:cstack在github维护了一个简单的、类似sqlite的数据库实现,通过这个简单的项目,可以很好的理解数据库是如何运行的。本文是第七篇,主要是对B-tree的介绍
索引的数据结构和具体存储引擎的实现有关,在MySQL中使用较多的索引有Hash索引,B+树索引等,而我们经常使用的InnoDB存储引擎的默认索引实现为:B+树索引。对于哈希索引来说,底层的数据结构就是哈希表,因此在绝大多数需求为单条记录查询的时候,可以选择哈希索引,查询性能最快;其余大部分场景,建议选择BTree索引。
MySQL索引的数据结构 概述 本质 优点 缺点 MySQL中的索引 Btree 示例 B+ Tree索引 带有顺序访问指针的B+ Tree ---- 概述 ---- 本质 ---- 优点 缺点 ---- MySQL中的索引 Btree 示例 ---- B+ Tree索引 ---- 带有顺序访问指针的B+ Tree
随着使用数据库的深度和理解能力的提升,有一个问题硬件的提升,与数据量的变化是否对数据库底层的架构有冲击。 我们公认的BTREE B+TREE 是否还能面对现在的硬件的变化。
索引是一种用于快速定位和访问数据的数据结构。在计算机科学中,索引通常是一种按照特定方式组织的数据结构,它可以加快在大型数据集中查找数据的速度。索引可以根据不同的属性进行排序,例如字母顺序、数字顺序或时间顺序等。通过使用索引,可以在数据集中快速定位特定的数据,避免了对整个数据集进行搜索的时间和资源浪费。常见的索引类型包括哈希索引、B树和B+树等。
假设我们有一张数据表 employee(员工表),该表有三个字段(列),分别是name、age 和address。假设表employee有上万行数据(这公司还真大),现在需要从这个表中查找出所有名字是‘ZhangSan’的雇员信息,你会快速的写出SQL语句:
继我的上篇博客:Oracle索引知识学习笔记,再记录一篇MySQL的索引知识学习笔记,本博客是我在学习尚硅谷的学习教程后,做的笔记,当然我不是为了所谓宣传,仅仅是学习记录的笔记。本来可以不分享出来,不过,分享出来的笔记不仅可以给网上的学习者参考学习,同时写在csdn比较方便,可以支持图片上传,也方便自己以后查找复习
为什么加索引? 如果上面的表,我们执行SQL语句 select * from table where Col2=89; 这样就会造成全表扫描,从第一行读取到倒数第二行,然后拿到这个89这个对应的值的位
当db的量达到一定数量级之后,每次进行全表扫描效率就会很低,因此一个常见的方案是建立一些必要的索引作为优化手段,那么问题就来了:
索引分为主键索引和辅助索引,辅助索引又分为唯一性索引,普通索引,复合索引,覆盖索引。
最近遇到两个问题,wriedtiger引擎到底支持不支持LSM tree , 2 为什么percona的mongodb Dump 了ROCKSDB 的数据库引擎.
索引是一种特殊的文件(InnoDB数据表上的索引是表空间的一个组成部分),它们包含着对数据表里所有记录的引用指针。更通俗的说,索引就相当于目录。当你在用新华字典时,帮你把目录撕掉了,你查询某个字开头的成语只能从第一页翻到第一千页。累!把目录还给你,则能快速定位!
索引的概念基本所有人都会遇到过,就算没有了解过数据库中的索引,在生活中也不可避免的接触到。比方说书籍的目录,字典的查询页,图书馆的科目检索等等。其实这些都是一种索引,并且所起到的作用大同小异。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
即为全文索引,目前只有MyISAM引擎支持。其可以在CREATE TABLE ,ALTER TABLE ,CREATE INDEX 使用,不过目前只有 CHAR、VARCHAR ,TEXT 列上可以创建全文索引。值得一提的是,在数据量较大时候,现将数据放入一个没有全局索引的表中,然后再用CREATE INDEX创建FULLTEXT索引,要比先为一张表建立FULLTEXT然后再将数据写入的速度快很多。
我相信大家在数据库优化的时候都会说到索引,我也不例外,大家也基本上能对数据结构的优化回答个一二三,以及页缓存之类的都能扯上几句,但是有一次阿里P9的一个面试问我:你能从计算机层面开始说一下一个索引数据加载的流程么?(就是想让我聊IO)
在日常工作中我们不可避免地会遇到慢SQL问题,比如笔者在之前的公司时会定期收到DBA彪哥发来的Oracle AWR报告,并特别提示我某条sql近阶段执行明显很慢,可能要优化一下等。对于这样的问题通常大家的第一反应就是看看sql是不是写的不合理啊诸如:“避免使用in和not in,否则可能会导致全表扫描”“ 避免在where子句中对字段进行函数操作”等等,还有一种常见的反应就是这个表有没有加索引?绝大部分情况下,加了个索引基本上就搞定了。
1、创建索引 索引的创建可以在CREATE TABLE语句中进行,也可以单独用CREATE INDEX或ALTER TABLE来给表增加索引。以下命令语句分别展示了如何创建主键索引(PRIMARY KEY),联合索引(UNIQUE)和普通索引(INDEX)的方法。 mysql>ALTER TABLE 表名 ADD INDEX 索引名 列名; mysql>ALTER TABLE 表名 ADD UNIQUE 索引名 列名; mysql>ALTER TABLE 表名 ADD PRIMARY KEY 索引名 列名;
本篇,我们介绍一个对于大型或高并发数据库影响非常有大的知识 —— 索引。了解它是如何工作的以及它为何能提升性能。 点击下载创建本章所用数据库脚本。
如果查询id为9,name为ii的,在表中需要查询9次,但是在二叉树中需要查询3次。
前几篇文章介绍了mysql的底层数据结构和mysql优化的神器explain。 BAT大厂都会问的MySQL底层数据结构 一线互联网公司必问的MySql优化神器 后台有些朋友说小强只介绍概念,平时使用还是一脸懵,强烈要求小强来一篇实战sql优化,经过周末两天的整理和总结,sql优化实战新鲜出炉, 大家平时学习和工作中,遇到的99% 的sql优化都会介绍到,介于篇幅过长,分成3篇文章哈。
OPTIMIZE TABLE 当您的库中删除了大量的数据后,您可能会发现数据文件尺寸并没有减小。这是因为删除操作后在数据文件中留下碎片所致。OPTIMIZE TABLE 是指对表进行优化。如果已经删除了表的一大部分数据,或者如果已经对含有可变长度行的表(含有 VARCHAR 、 BLOB 或 TEXT 列的表)进行了很多更改,就应该使用 OPTIMIZE TABLE 命令来进行表优化。这个命令可以将表中的空间碎片进行合并,并且可以消除由于删除或者更新造成的空间浪费 。OPTIMIZE TABLE 命令只对 MyISAM 、 BDB 和 InnoDB 表起作用 。表优化的工作可以每周或者每月定期执行,对提高表的访问效率有一定的好处,但是需要注意的是,优化表期间会锁定表,所以一定要安排在空闲时段进行。
这篇文章的题目,是我真实在面试过程中遇到的问题,某互联网众筹公司在考察面试者MySQL相关知识的第一个问题,我当时还是比较懵的,没想到这年轻人不讲武德,不按套路出牌,一般的问MySQL的相关知识的时候,不都是问索引优化以及索引失效等相关问题吗?怎么还出来了,存储文件的不同?哪怕考察个MVCC机制也行啊。所以这次我就好好总结总结这部分知识点。
MySQL官方对索引的定义为:索引(index)是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护者满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。如下面的==示意图==所示 :
首先看一下,在数据库没有加索引的情况下,SQL中的where语句是如何查找目标记录的,首先看到下图的Col2字段,如果我们要查找where col2 = 89的记录,我们在没有加索引的情况下,数据库默认会从上往下按顺序查找记录,那么将会查找5次才能查到数据,如果对Col2字段加上索引之后,假设使用最简单的二叉树作为索引存储,那么带条件查询的话,就只需要查询2次即可查到了,效率有明显的提升
网上已经有了很多相关mysql索引原理的文章,但是都存在一些问题,有的是直接复制别人的比较老的文章,有的直接开篇讲B+Tree的原理,过程不是很清楚,即使原理讲清楚了,没有各种数据结构的对比也很难体现出B+Tree的优越性,其实我觉得从一些问题来看,然后根据发现问题解决问题的思路来看,这样可能学习效果会更好,所以写了这篇文章,希望你能喜欢
微服务架构下,很适合用 DDD(Domain-Drive Design)思维来设计各个微服务,使用领域驱动设计的理念,工程师们的关注点需要从 CRUD 思维中跳出来,更多关注通用语言的设计、实体以及值对象的设计。至于数据仓库,会有更多样化的选择。分布式系统中数据存储服务是基础,微服务的领域拆分、领域建模可以让数据存储方案的选择更具灵活性。
摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题。特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等。为了避免混乱,本文将只关注于BTree索引,因为这是平常使用MySQL时主要打交道的索引,至于哈希索引和全文索引本文暂不讨论。 文章主要内容分为三个部分。 第一部分主要从数据结构及算法理论层面讨论MySQL数据库索引的数理基础。 第二部分结合MySQL数据库中MyISAM和
本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题。特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等。为了避免混乱,本文将只关注于BTree索引,因为这是平常使用MySQL时主要打交道的索引,至于哈希索引和全文索引本文暂不讨论。
在整个计算机运行系统里,Cpu,内存,和磁盘主要的性能瓶颈是卡在了读取数据中,Mysql索引的优化主要在减少磁盘I/O操作中,这篇博客中详细讲解了二叉树结构,以及BTree作为Mysql索引结构的根本原理,文章底部留下来几个常用的问题。
索引的本质其实就是一种数据结构。我们都希望查询数据的速度能尽可能的快,因此数据库系统的设计者会从查询算法的角度进行优化。最基本的查询算法当然是顺序查找,这种复杂度为 O(n) 的算法在数据量很大时显然是糟糕的,好在计算机科学的发展提供了很多更优秀的查找算法,例如二分查找、二叉树查找等。如果稍微分析一下会发现,每种查找算法都只能应用于特定的数据结构之上,例如二分查找要求被检索数据有序,而二叉树查找只能应用于二叉查找树上,但是数据本身的组织结构不可能完全满足各种数据结构(例如,理论上不可能同时将两列都按顺序进行组织),所以,在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法。这种数据结构,就是索引。
前言 写这篇文章源自一位杠精同事提了个问题,左侧原则跟where条件顺序有无关系?我想了想,好像是有关系的!不敢确定,但是自己又懒得动手测试,于是发起ETC自动抬杠功能,强行杠了一拨,结果杠输了,接
在开始讲这一小节之前,我们先来看一下在数据库没有加索引的情况下,SQL中的where字句是如何查找目标记录的。
领取专属 10元无门槛券
手把手带您无忧上云