首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    从Word EmbeddingBert模型——自然语言处理预训练技术发展史

    本文的主题是自然语言处理中的预训练过程,会大致说下 NLP 中的预训练技术是一步一步如何发展到 Bert 模型的,从中可以很自然地看到 Bert 的思路是如何逐渐形成的,Bert 的历史沿革是什么,继承了什么...▌Bert 的诞生 我们经过跋山涉水,终于到了目的地 Bert 模型了。 Bert 采用和 GPT 完全相同的两阶段模型,首先是语言模型预训练;其次是使用 Fine-Tuning 模式解决下游任务。...当然这是我自己的改造,Bert 没这么做。那么 Bert 是怎么做的呢?我们前面不是提过 Word2Vec 吗?...其实 Bert 怎么做的?Bert 就是这么做的。从这里可以看到方法间的继承关系。...把单词对应的三个 embedding 叠加,就形成了 Bert 的输入。 至于 Bert 在预训练的输出部分如何组织,可以参考上图的注释。

    73420

    从Word EmbeddingBert模型——自然语言处理预训练技术发展史

    本文的主题是自然语言处理中的预训练过程,会大致说下 NLP 中的预训练技术是一步一步如何发展到 Bert 模型的,从中可以很自然地看到 Bert 的思路是如何逐渐形成的,Bert 的历史沿革是什么,继承了什么...▌Bert 的诞生 ? 我们经过跋山涉水,终于到了目的地 Bert 模型了。...其实 Bert 怎么做的?Bert 就是这么做的。从这里可以看到方法间的继承关系。...其实 Bert 本身的效果好和普适性强才是最大的亮点。 ? 那么 Bert 本身在模型和方法角度有什么创新呢?...把单词对应的三个 embedding 叠加,就形成了 Bert 的输入。 ? 至于 Bert 在预训练的输出部分如何组织,可以参考上图的注释。 ?

    1.4K40

    Embedding是什么?

    Embedding是什么 嵌入是将正整数(索引值)转换为固定尺寸的稠密向量。这句话来着keras文档中对embedding层的解释,非常概括,不太容易理解,但确实概括了要干的事情。...Embedding是如何实现的 通过Embedding层实现,embedding层可以看作是一张从索引映射到稠密向量的查找表,当使用embedding层的时候,embedding层和神经网络其他层一样...根据你的训练任务,embedding层通过反向传播逐渐调整。 embedding层的具体结构即全连接网络,输入为整数索引,隐含层是embedding的维度,隐含层的权重就是词嵌入。...embedding_dim=16 model = Sequential([  vectorize_layer,  Embedding(vocab_size, embedding_dim, name...Embedding在输入数据没有较好的数据表示时,能将输入数据根据下游任务转化为可学习的高维度向量表示,比如输入的为单词、图片或者输入的为空间位置等。

    86420

    BERTBERT模型压缩技术概览

    因此,讨论如何在不过多的损失BERT性能的条件下,对BERT进行模型压缩,是一个非常有现实意义的问题。 本文先介绍模型压缩的概念及常见方法;随后,对目前出现的BERT剪枝的技术做一个整体的介绍。...,这导致几乎没有BERT或者 BERT-Large 模型可直接在GPU及智能手机上应用,因此模型压缩方法对于BERT的未来的应用前景非常有价值。...下面介绍一些BERT模型压缩的工作,可作参考。 (1) BERT剪枝 去掉BERT中不必要的部分,剪枝的内容包括权重大小剪枝、注意力剪枝、网络层以及其他部分的剪枝等。...BERT模型包括输入层(嵌入层),self-attention层,feed-forward等,针对BERT系列模型的结构,可采取的剪枝策略如下: 1)减少层数 在BERT模型的应用中,我们一般取第12层的...[1] Q8BERT: Quantized 8Bit BERT [2] Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT 总结

    1.4K21

    「X」Embedding in NLP|神经网络和语言模型 Embedding 向量入门

    我们在后续的文章中将基于这个原则探讨 Embedding 向量。隐藏层的概念对理解向量搜索至关重要。...语言模型 Embedding 我们在上面例子中看到的隐藏层有效地将已经输入到 RNN 的所有内容(所有 Token)进行编码。...换句话说,h 编码了输入序列的语义,而由 h 定义的有序浮点值集合就是 Embedding 向量,简称为 Embedding。 这些向量表示广泛构成了向量搜索和向量数据库的基础。...尽管当今自然语言的 Embedding 是由另一类称为 Transformer 的机器学习模型生成的,而不是 RNN,但本质概念基本相同:将文本内容编码为计算机可理解的 Embedding 向量。...我们将在下一篇博客文章中详细讨论如何使用 Embedding 向量。 04. 总结 我们在 PyTorch 中实现了一个简单的循环神经网络,并简要介绍了语言模型Embedding

    22710

    闲聊word_embedding

    NLP word embedding 概述 依稀记得去年数据挖掘课有讲过这个概念,年轻不懂事,没认真听,只能现在补课 对于自然语言处理其实目前涉及的比较少,但是如果是临床大夫可能就比较多了,比较经典的例子就是电子病例的挖掘...什么是embedding?...,简单的说embedding就是将一个词用一个低维的向量来表示,这个使用低维向量表示高维世界物体的想法跟傅里叶变化有着异曲同工之秒。...通俗的讲从另一个世界看这个世界 word embedding 的优点 降低参数的数量,和one-hot相比 通用性强 词与词之间存在关联 两种主流算法 Word2vec word2vec是谷歌研发的算法...,这个算法的提出,让embedding方法得到了广泛的使用 Global Vectors for Word Representation(GloVe) 结束语 word2vec的算法原理很复杂,整不明白

    74710
    领券