object): def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler...False, drop_last=False, timeout=0, worker_init_fn=None) 可以看到初始化参数里有两种sampler:sampler和batch_sampler...前者的作用是生成一系列的index,而batch_sampler则是将sampler生成的indices打包分组,得到一个又一个batch的index。...WeightedSampler SubsetRandomSampler 需要注意的是DataLoader的部分初始化参数之间存在互斥关系,这个你可以通过阅读源码更深地理解,这里只做总结: 如果你自定义了batch_sampler...如果你自定义了sampler,那么shuffle需要设置为False 如果sampler和batch_sampler都为None,那么batch_sampler使用Pytorch已经实现好的BatchSampler
padding到统一长度,取N个输入数据中的最大长度 # 长度是指的: 一个batch中的最大长度,主要考虑性能开销 # paddlenlp.data.Tuple 将多个batchify函数包装在一起 batch_sampler...,充分利用资源 train_data_loader = paddle.io.DataLoader( dataset=train_ds.map(trans_func), # 数据转换 batch_sampler...=batch_sampler, # 取样 collate_fn=batchify_fn, # batch化函数 return_list=True ) batch_sampler = paddle.io.BatchSampler...=batch_sampler, collate_fn=batchify_fn, return_list=True ) 4....data for data in fn(samples)] # 加载测试集 test_ds = load_dataset("lcqmc", splits=["test"]) # 定义 sampler batch_sampler
我们使用的大部分数据集都是map-style类型的数据集 sampler,batch_sampler及shuffle 这里主要为关于map-style的介绍。...DataLoader通过参数batch_size、drop_last和batch_sampler自动将获取的单个数据样本排序成批。...batch_size和drop_last参数本质上是用来从sampler中构造batch_sampler的。...当batch_size和batch_sampler都为None (batch_sampler的默认值已经为None)时,为非自动成批模式。...因此batch_sampler会根据batch_size和sampler产生 个batch。 在epoch中进行训练。
DataLoader,这篇文章总结的不错: https://blog.csdn.net/u012436149/article/details/78545766 我觉得有两个地方新手容易忽略:如果指定了batch_sampler...即使自己不指定batch_sampler,DataLoader还是会生成的: if batch_sampler is None: if sampler is None:...RandomSampler(dataset) else: sampler = SequentialSampler(dataset) batch_sampler
over the dataset. """ def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler...option should be non-negative') # 检测是否存在参数冲突: 默认batchSampler vs 自定义BatchSampler if batch_sampler...if batch_size > 1 or shuffle or sampler is not None or drop_last: raise ValueError('batch_sampler...') # 在此处会强行指定一个 BatchSampler if batch_sampler is None: # 在此处会强行指定一个 Sampler...dataset) else: sampler = SequentialSampler(dataset) batch_sampler
object): def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler...if batch_size > 1 or shuffle or sampler is not None or drop_last: raise ValueError('batch_sampler...and shuffle: raise ValueError('sampler is mutually exclusive with shuffle') if batch_sampler...BatchSampler(sampler, batch_size, drop_last) self.sampler = sampler self.batch_sampler = batch_sampler...self.pin_memory = loader.pin_memory self.done_event = threading.Event() # 这样就可以用 next 操作 batch_sampler
其接口定义如下: DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None...· 自定义数据加载顺序,主要涉及到的参数有 shuffle,sampler,batch_sampler,collate_fn。...· 自动把数据整理成batch序列,主要涉及到的参数有 batch_size,batch_sampler,collate_fn,drop_last。...3.1 批处理 3.1.1 自动批处理(默认) DataLoader 支持通过参数 batch_size, drop_last, batch_sampler,自动地把取出的数据整理(collate)成批次样本...抽象整个过程,其表示方式大致如下: # For Map-style for indices in batch_sampler: yield collate_fn([dataset[i] for
See the next section for more details on this.NoteNeither sampler nor batch_sampler is compatible with...For map-style datasets, users can alternatively specify batch_sampler, which yields a list of keys at...a time.NoteThe batch_size and drop_last arguments essentially are used to construct a batch_sampler...are None (default value for batch_sampler is already None), automatic batching is disabled....batch_sampler (Sampler, optional) – like sampler, but returns a batch of indices at a time.
5、batch_sampler,从注释可以看出,其和batch_size、shuffle等参数是互斥的,一般采用默认。6、sampler,从代码可以看出,其和shuffle是互斥的,一般默认即可。...If specified, ``shuffle`` must be False. batch_sampler (Sampler, optional): like sampler, but returns...(default: None) """ def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler...if batch_size > 1 or shuffle or sampler is not None or drop_last: raise ValueError('batch_sampler...if batch_sampler is None: if sampler is None: if shuffle:
) else: raise ValueError("Unknown training sampler: {}".format(sampler_name)) batch_sampler...torch.utils.data.DataLoader( dataset, num_workers=cfg.DATALOADER.NUM_WORKERS, batch_sampler...=batch_sampler, collate_fn=trivial_batch_collator, worker_init_fn=worker_init_reset_seed
第2个步骤从0到n-1的范围中抽样出m个数的方法是由 DataLoader的 sampler和 batch_sampler参数指定的。...batch_sampler参数将多个抽样的元素整理成一个列表,一般无需用户设置,默认方法在DataLoader的参数drop_last=True时会丢弃数据集最后一个长度不能被batch大小整除的批次,...step2: 确定抽样indices (DataLoader中的 Sampler和BatchSampler实现) sampler = RandomSampler(data_source = ds) batch_sampler...DataLoader( dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None...batch_sampler: 批次采样函数,一般无需设置。 num_workers: 使用多进程读取数据,设置的进程数。 collate_fn: 整理一个批次数据的函数。
DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers...Batch_Sampler :批处理级别。 num_workers :加载数据所需的子进程数。 collate_fn :将样本整理成批次。Torch 中可以进行自定义整理。
(不太明白作用是什么,就暂时默认False) 5、batch_sampler:(数据类型 Sampler) 批量采样,默认设置为None。但每次返回的是一批数据的索引(注意:不是数据)。...比如:想打乱一下数据的排序,可以设置 shuffle(洗牌)为True; 比如:想数据是一捆的输入,可以设置 batch_size 的数目; 比如:想随机抽取的模式输入,可以设置 sampler 或 batch_sampler...方法返回迭代器中包含元素的长度. 3. class torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler
其接口定义如下: DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None..., collate_fn 自动把数据整理成batch序列,主要涉及到的参数有 batch_size, batch_sampler, collate_fn, drop_last 单进程和多进程的数据加载,...抽象这个过程,其表示方式大致如下 # For Map-style for indices in batch_sampler: yield collate_fn([dataset[i] for i..._sampler_iter) # may raise StopIteration 从这里看出,dataloader 提供了 sampler (可以是batch_sampler 或者是其他 sampler...,_auto_collation就为True, # 就优先使用batch_sampler,对应在fetcher中传入的就是一个batch的索引 data
其接口定义如下: DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None..., collate_fn 自动把数据整理成batch序列,主要涉及到的参数有 batch_size, batch_sampler, collate_fn, drop_last 单进程和多进程的数据加载,...抽象这个过程,其表示方式大致如下 # For Map-style for indices in batch_sampler: yield collate_fn([dataset[i] for i...in indices]) # For Iterable-style dataset_iter = iter(dataset) for indices in batch_sampler: yield...,_auto_collation就为True, # 就优先使用batch_sampler,对应在fetcher中传入的就是一个batch的索引 data
enumerate(train_loader): torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler...epoch开始的时候,对数据进行重新排序 sampler(Sampler, optional): 自定义从数据集中取样本的策略,如果指定这个参数,那么shuffle必须为False batch_sampler
dataset.map(trans_fn) shuffle = True if mode == 'train' else False if mode == 'train': batch_sampler...paddle.io.DistributedBatchSampler( dataset, batch_size=batch_size, shuffle=shuffle) else: batch_sampler...batch_size=batch_size, shuffle=shuffle) return paddle.io.DataLoader( dataset=dataset, batch_sampler...=batch_sampler, collate_fn=batchify_fn, return_list=True) # tokenizer = ppnlp.transformers.ErnieTokenizer.from_pretrained
batch_sampler (Sampler or Iterable, optional) :与sampler类似,但是每次返回一个批次的数据索引。..._dataset_kind = _DatasetKind.Map if batch_sampler is not None: # auto_collation...is None: # auto_collation without custom batch_sampler batch_sampler = BatchSampler...This would be # `.batch_sampler` if in auto-collation mode, and `.sampler` otherwise....,_auto_collation就为True, # 那么就优先使用batch_sampler,此时fetcher中传入的就是一个batch的索引 data
领取专属 10元无门槛券
手把手带您无忧上云