代码有点多,我都注释过了,该文章仅协程部分,python官网入门教程的化请看我github:python3.9入门教程 群:970353786 代码有点多,不懂可群问我,下面是协程方面的代码demo:
Python 的 asyncio 模块提供了一些高级用法,可以帮助我们更好地利用协程来实现异步编程。
在 Python 3.7版本开始,引入了新功能asyncio.run来快速运行一段异步代码。
asyncio 是 Python 的一个内置库,它的主要用途是编写单线程并发代码,主要通过协程实现。这个库在 Python 3.4 版本中引入,作为 Python 的异步 I/O 框架,提供了基于事件循环的并发模型。
Python3.7的正式版本已经发布有一段时间了,出了内置的breakpoint()断点函数,颇受争议的dataclass,自定义模块里的__getattr__()和__dir__()魔法方法等新特性外以及一些底层的改进外,还添加了一些新的api。其中我个人比较喜欢的一个新API是asyncio.run()方法,可以省去显式的定义事件循环的步骤。
Python 在 3.5 版本中引入了关于协程的语法糖 async 和 await, 在 python3.7 版本可以通过 asyncio.run() 运行一个协程。 所以建议大家学习协程的时候使用 python3.7+ 版本,本文示例代码在 python3.8 上运行的。
如果需要并发 http 请求怎么办呢?requests库是同步阻塞的,必须等到结果才会发第二个请求,这里需使用http请求异步库 aiohttp。
协程函数和普通的函数不一样,不能直接执行。必须将协程对象(函数)放入事件循环中来执行。在Python3.4的时候,引入内置模块asyncio,该模块可以将协程对象加入到事件循环中执行。
Task用于并发调度协程,通过asyncio.create_task()的方式创建Task对象,我们可以添加多个任务在其中,当遇到io阻塞时,会去调用其他的任务执行。(python 3.7)
上面的代码也可以这样写,将15到21行换成一行await asyncio.gather(a(), b())也能实现类似的效果,await asyncio.gather 会并发运行传入的可等待对象(Coroutine、Task、Future)。
我们一直都相信这样一种说法:协程是比多线程更高效的一种并发工作方式,它完全由程序本身所控制,也就是在用户态执行,协程避免了像线程切换那样产生的上下文切换,在性能方面得到了很大的提升。毫无疑问,这是颠扑不破的业界共识,是放之四海而皆准的真理。
Python的asyncio模块是一个用于编写单线程并发代码的库,使用协程,多路复用IO以及其他技术。asyncio即Asynchronous I/O是python一个用来处理并发(concurrent)事件的包,是很多python异步架构的基础,多用于处理高并发网络请求方面的问题。
https://docs.python.org/zh-cn/3/library/asyncio.html
class EchoServerProtocol(asyncio.Protocol):
协程(Coroutine),又称微线程,纤程。(协程是一种用户态的轻量级线程) 作用:在执行 A 函数的时候,可以随时中断,去执行 B 函数,然后中断B函数,继续执行 A 函数 (可以自动切换),但这一过程并不是函数调用(没有调用语句),过程很像多线程,然而协程只有一个线程在执行 通俗的理解:在一个线程中的某个函数,可以在任何地方保存当前函数的一些临时变量等信息,然后切换到另外一个函数中执行,注意不是通过调用函数的方式做到的,并且切换的次数以及什么时候再切换到原来的函数都由开发者自己确定
协程是一种轻量级的线程,它允许函数在执行过程中暂停并恢复。与常规函数不同,协程具有多个入口点,可以在函数内部的任何位置暂停和继续执行。Python的协程通过async和await关键字来定义和管理。
五一快乐呀(5.10日:对不起我卡住了太久),由于我玩了三天所以没怎么更新,我的干货也发完啦。现在开始学习新的东西了,异步编程,觉得有点儿难,有些东西理解不了,话说现在我的学习进度很慢,需要加快点速度了。
asyncio相关模块已经成为Python很核心的一部分,aio-libs一直在持续的发展中,例如aiohttp、aiopg等库已经可以初步的在生产环境使用了。在Python3.7中,引入了一系列的与asyncio相关变化,这些变化聚焦在代码质量,让开发者尽量地减少工作量和获得更好的性能体验,主要内容包括了<新的保留字>、<环境变量>、<新的asyncio.run()函数>、<更简单的任务管理、时间循环管理>、<回调更新>、<异步的上下文管理器>等。
5、一个比较好的方式是asyncio.run(main())作为程序入口,在程序运行周期内,只调用一次asyncio.run()
Python 中的 asyncio 模块提供了一些有用的 debug 工具,可以帮助我们更好地理解异步IO程序的运行状态,并找到程序中的错误。在本节中,我们将介绍 asyncio 的 debug 工具,并介绍如何使用这些工具进行调试。
在上一篇文章中,我们提到了 aiohttp 官方文档中的默认写法速度与 requests 单线程请求没有什么区别,需要通过使用asyncio.wait来加速 aiohttp 的请求。今天我们来探讨一下这背后的原因。
Asyncio异步编程的核心思想是让程序在等待I/O操作完成的同时,可以继续执行其他任务,从而提高资源利用率。这就好比一个厨师在炖菜的同时,开始准备沙拉,而不是煮一道菜时傻站着等待。通过合理安排,程序可以在单线程下高效完成诸多任务,从而达到"伪并行"的效果,提高了性能。
Python 的 Asyncio 模块在处理 I/O 密集型任务时表现出色,并且在最近的 Python 版本迭代中获得了诸多增强。不过,由于处理异步任务的途径多样,选择在特定情境下最合适的方法可能会让人感到迷惑。在这篇文章[1]中,我会先从任务对象的基本概念讲起,接着探讨各种处理异步任务的方法,并分析它们各自的优势和劣势。
asyncio 是python3.4 引入的一个新的并发模块,主要通过使用coroutines 和 futures 来让我们更容易的去实现异步的功能,并且几乎和写同步代码一样的写代码,还没有烦人的回调。
我们可以反省在 asyncio 事件循环中运行的任务。这可以通过为当前运行的任务和所有正在运行的任务获取一个 asyncio.Task 对象来实现。
协程的概念 协程: 又称为微线程、纤程,英文名: Coroutine 通过 async/await 语法进行声明,是编写异步应用的推荐方式 import asyncio async def main(): print('hello') await asyncio.sleep(1) print('world') # python # asyncio.run(main()) # jupyter await main() hello world 协程中有哪两个运行任务的函
Timeout 是 asyncio 中的一个概念,它代表一个超时时间。我们可以使用 asyncio.wait_for() 方法设置协程任务的超时时间,从而避免协程任务无限阻塞。
参考:https://github.com/rany2/edge-tts 目前3.1k 🌟
使用协程也就意味着你需要一直写异步方法。在 Python 中我们使用 asyncio 模块来实现一个协程。如果我们把 Python 中普通函数称之为同步函数(方法),那么用协程定义的函数我们称之为异步函数(方法)。
在异步编程中,asyncio 是 Python 中的一种常用的异步 I/O 库。在使用 asyncio 编写程序时,由于异步任务之间存在依赖关系,因此错误调试是非常重要的。
在Python中,协程并发是一种常见的编程模型,可以用于实现高效的并发操作。协程并发是基于事件循环机制实现的,通过事件循环机制来调度多个协程,从而实现高效的并发操作。
在 asyncio 中,我们还可以使用日志系统进行调试。日志系统可以将程序运行时的信息输出到指定的日志文件或者控制台中,从而方便我们查看程序运行时的状态。
在之前Q群ChatGPT机器人使用的依赖仓库中,作者更新了V2 Fast ChatGPT API的用法(截至此时该方法已失效),里面涉及到了协程的相关用法。协程在平时用到的不多,正好趁机补充补充知识。
Python3.4后新增了asyncio模块,支持异步编程。异步是在一个线程中通过任务切换的方式让多个任务”同时“进展。异步不涉及线程/进程切换,减少了线程/进程创建、上下文切换的开销,更轻量级。 asyncio的核心是事件循环,不断监听/执行队列中的任务。
随着计算机应用程序的复杂性不断增加,对于高效处理I/O密集型任务的需求也越来越迫切。在Python中,asyncio模块提供了一种强大的异步编程方式,使得开发者能够轻松地处理并发任务,提高程序的性能和响应速度。本文将深入探讨asyncio的使用方法和原理,带你一窥异步编程的奥妙。
这是一种非常常见的直线性思维,我先请求网站拿到 html,然后我再把 html 传给负责处理的函数。在整个过程中,“我“担任着调度的角色。
协程是一种高效的异步编程方式,但协程的性能也受到一些因素的影响,如协程的数量、协程的调度等。在实际应用中,我们需要测试协程的性能,并进行优化,以提高应用的吞吐量和响应速度。
'=='操作符比较对象之间的值是否相等。 'is'操作符比较的是对象的身份标识是否相等,即它们是否是同一个对象,是否指向同一个内存地址。
Lock 是一种并发控制机制,用于协调多个协程之间对共享资源的访问。在 Python 中,我们可以使用 asyncio.Lock 类来创建 Lock 对象,并使用 async with 语句获取 Lock 对象的锁。在协程任务完成后,我们需要释放 Lock 对象的锁,以允许其他协程任务对共享资源进行访问。
在协程编程中,由于协程的异步执行特性,多个协程任务可以并发执行,从而提高程序的执行效率。然而,当需要对多个协程任务进行并发控制时,我们需要使用协程的并发控制机制,如 Semaphore、Event、Lock 等。
作者:matrix 被围观: 3,714 次 发布时间:2019-11-26 分类:Python | 无评论 »
写在前面: 花了一周的时间,对协程做了一个简单的梳理,特别是异步编程asyncio库的使用,做了详细的说明。本文主要包括的知识点有:yield生成器的复习并实现协程的功能、greenlet库实现协程、gevent库实现协程、asyncio异步协程的介绍、异步协程的创建与运行、任务的创建与运行、并发运行gather/wait/as_complete/wait_for等方法的实现、异步协程的嵌套、await关键字的理解等等,这些都是基础。由于篇幅比较长,打算分为两篇,第二篇在介绍一下asyncio的其他用法。
异步 IO 是一种并发编程设计,Python3.4 开始,已经有专门的标准库 asyncio 来支持异步 IO 操作。你可能会说,我知道并发用多线程,并行用多进程,这里面的知识已经够我掌握的了,异步 IO 又是个什么鬼?本文将会回答该问题,从而使你更加牢固地掌握 Python 的异步 IO 操作方法。
异步上下文管理器。类似于同步上下文管理器,我们知道使用with可以实现一个上下文管理的器,而对于异步上下文管理器其根本表现形式为async with,下面的一段代码告诉你async with是如何运作的。
在同步情况下:小明需要电饭锅处等待30分钟、洗衣机处等待40分钟、写作业50分钟,总计花费时间120分钟。 在异步情况下:小明需要电饭锅处理并启动花费10分钟、洗衣机处理并启动花费10分钟,写作业花费50分钟,总计花费时间70分钟。
Python的异步编程是一项极为强大的技术,通过事件循环和协程,你可以实现高效的非阻塞并发操作。在这篇文章中,我们将揭示Python异步编程的黑科技,深入了解事件循环的奥秘,助你在编写异步代码时游刃有余。
在传统的同步IO编程中,当我们发起一个HTTP请求时,我们需要等待服务器返回响应,这样就会阻塞当前线程的执行。如果需要发起多个HTTP请求,就需要创建多个线程或进程来处理这些请求,这样会造成资源浪费和性能下降。为了解决这个问题,Python提供了异步IO编程模型,可以实现异步HTTP请求,从而提高程序的性能和并发能力。
领取专属 10元无门槛券
手把手带您无忧上云