这是一个基于n-Gram+CRF+HMM的中文分词的java实现。分词速度达到每秒钟大约200万字左右(mac air下测试),准确率能达到96%以上。目前实现了中文分词、中文姓名识别、用户自定义词典、关键字提取、自动摘要、关键字标记等功能。可以应用到自然语言处理等方面,适用于对分词效果要求高的各种项目。
一、前言 之前做solr索引的时候就使用了ANSJ进行中文分词,用着挺好,然而当时没有写博客记录的习惯。最近又尝试了好几种JAVA下的中文分词库,个人感觉还是ANSJ好用,在这里简单总结之。 二、什么是中文分词 百度百科对其定义如下: 中文分词(Chinese Word Segmentation) 指的是将一个汉字序列切分成一个一个单独的词。分词就是将连续的字序列按照一定的规范重新组合成词序列的过程。我们知道,在英文的行文中,单词之间是以空格作为自然分界符的,而中文只是字、句和段能通过明显的分界符来简单划
ANSJ 这是一个基于n-Gram+CRF+HMM的中文分词的java实现. 分词速度达到每秒钟大约200万字左右(mac air下测试),准确率能达到96%以上 目前实现了.中文分词. 中文姓名识别 . 用户自定义词典,关键字提取,自动摘要,关键字标记等功能 可以应用到自然语言处理等方面,适用于对分词效果要求高的各种项目. 分词的目的是创建一个高稳定可用的中文分词工具,可以利用到各种需要文字处理的场景中下面简单介绍一下Ansj中文分词的主要算法及特点. 数据结构 高度优化Trie树 在用户自定义词典以
笔者寄语:与前面的RsowballC分词不同的地方在于这是一个中文的分词包,简单易懂,分词是一个非常重要的步骤,可以通过一些字典,进行特定分词。大致分析步骤如下:
Mapping { "indexName":"drug", "indexSource":{ "settings":{ "number_of_shards":1, "number_of_replicas":2, "index":{ "analysis":{ "filter":{ "bigr
散仙在上篇文章中,介绍过如何使用Pig来进行词频统计,整个流程呢,也是非常简单,只有短短5行代码搞定,这是由于Pig的内置函数TOKENIZE这个UDF封装了单词分割的核心流程,当然,我们的需求是各种各样的,Pig的内置函数,仅仅解决了80%我们常用的功能,如果稍微我有一些特殊的需求,就会发现内置函数解决不了,不过也无需担忧,Pig开放了各个UDF的接口和抽象类,从加载,转换,过滤,存储等等,都有对应的实现接口,只要我们实现或继承它,就非常方便扩展。 本篇呢,散仙会使用Ansj分词器+Pig来统计中文的
本文主要介绍四个分词插件(ICTCLAS、IKAnalyzer、Ansj、Jcseg)和一种自己写算法实现的方式,以及一些词库的推荐。
Solr发展飞快,现在最新的版本已经6.1.0了,下面来回顾下Solr6.x之后的一些新的特点: (1)并行SQL特性支持,编译成Streaming 表达式,可以在solrcloud集群中,并行执行 (2)SolrCloud的Collection被抽象成关系型数据库表,现在不仅仅可以支持强大的全文检索,还通过SQL支持像数据库一样的BI分析 (3)在SQL的where语句中,全面支持强大的Lucene/Solr语法 (4)一些聚合操作例如Group会自动优化成并行操作,通过使用St
背景:content.keyword字段使用keyword类型,在导数据的时候出现异常。
在自然语言处理中比较热门的操作就是中文或英文语句分词了,分词就是按照不同的算法和参数将语句分成若干词汇。拆分后的关键词可以进行词频统计或者词云图片生成等,能够快速方便的找到语句的核心主题热点。
父子文档在理解上来说,可以理解为一个关联查询,有些类似MySQL中的JOIN查询,通过某个字段关系来关联。父子文档与嵌套文档主要的区别在于,父子文档的父对象和子对象都是独立的文档,而嵌套文档中都在同一个文档中存储。如下图所示:
中文主要有:NLTK,FoolNLTK,HanLP(java版本),pyhanlp(python版本),Ansj,THULAC,结巴分词,FNLP,哈工大LTP,中科院ICTCLAS分词,GATE,SnowNLP,东北大学NiuTrans,NLPIR,;
中文分词 就是将一句话分解成一个词一个词,英文中可以用空格来做,而中文需要用一些技术来处理。 三类分词算法: 1. 基于字符串匹配: 将汉字串与词典中的词进行匹配,如果在词典中找到某个字符串,则识别出一个词。 优点,速度快,都是O(n)时间复杂度,实现简单。 缺点,对歧义和未登录词处理不好。 此类型中常用的几种分词方法有: 1. 正向最大匹配法: 假设词典中最大词条所含的汉字个数为n个,取待处理字符串的前n个字作为匹配字段。若词典中含有该词,则匹配成功,分出该词,然后从被比较字符串的n+1处开始再取n个
在上篇实现了电影详情和短评数据的抓取。到目前为止,已经抓了2000多部电影电视以及20000多的短评数据。 数据本身没有规律和价值,需要通过分析提炼成知识才有意义。抱着试试玩的想法,准备做一个有关情感分析方面的统计,看看这些评论里面的小伙伴都抱着什么态度来看待自己看过的电影,怀着何种心情写下的短评。 鉴于爬取的是短评数据,少则10来个字,多则百来个字,网上查找了下,发现Google开源的Word2Vec比较合适,于是今天捣鼓了一天,把自己遇到的问题和运行的结果在这里做个总结。 Word2Ve
maven作为项目依赖管理工具,同时有很多团队将自身优秀的jar包开源出来,极大地便利了Java系的开发。
球友在 ElasticSearch 版本选型问题中提及:如果要使用ik插件,是不是就使用目前最新的IK对应elasticsearch的版本“8.8.2”?
继 无编码利用协同算法实现个性化推荐,我纯粹使用SQL和配置实现了一个更为复杂一些的,计算文章词汇的tf/idf值,将浏览数作为预测值,使用线性回归算法进行模型训练的示例。帮助大家更好的了解StreamingPro对算法的优秀支持。这篇文章的示例将会跑在Spark 2.0 上了。为了方便大家体验,我已经将Spark 安装包,StreamignPro,以及分词包都准备好,大家下载即可。
分词器选择 调研了几种分词器,例如IK分词器,ansj分词器,mmseg分词器,发现IK的分词效果最好。举个例子: 词:<<是的>>哈<\span>撒多撒ئۇيغۇر تىلى王者荣耀sdsd@4342啊啊啊 Standard: 是,的,span,哈,span,撒,多,撒,ئۇيغۇر,تىلى,王,者,荣,耀,sdsd,4342,啊,啊,啊,啊 mmseg_maxword:是,的,span,哈,span,撒,多,撒,ئ,ۇ,ي,غ,ۇ,ر,ت,ى,ل,ى,王者,荣耀,sdsd,4342,啊
单机:R语言+Rwordseg分词包 (建议数据量<1G) 分布式:Hadoop+Smallseg库 词库:Sougou词库,Sougou输入法官网可下载 这里只先介绍单机的实现: 1、R语言:专门用于统计分析、绘图的语言 2、Rwordseg分词包:引用了@ansj开发的ansj中文分词工具,基于中科院的ictclas中文分词算法,无论是准确度还是运行效率都超过了rmmseg4j。
要分析文本内容,最常见的分析方法是提取文本中的词语,并统计频率。频率能反映词语在文本中的重要性,一般越重要的词语,在文本中出现的次数就会越多。词语提取后,还可以做成词云,让词语的频率属性可视化,更加直
今天下午部门内部技术分享是分词器算法。这次的主讲是大名鼎鼎的Ansj分词器的作者-孙健。 作者简介: Ansj分词器作者 elasticsearch-sql(elasticsearch的sql插件)作者,支持sql查询 nlp-lang自然语言工具包发起人 NLPCN(自然语言处理组织)发起人 等等... 网站:http://www.nlpcn.org/ GIT地址:https://github.com/NLPchina 具体作者详情请百度、Google 大神首先对中文分词的概念进行详细的解释
* 中文分词常用实现: 单机:R语言+Rwordseg分词包 (建议数据量<1G) 分布式:Hadoop+Smallseg库 词库:Sougou词库,Sougou输入法官网可下载 这里只先介绍单机的实现: 1、R语言:专门用于统计分析、绘图的语言 2、Rwordseg分词包:引用了@ansj开发的ansj中文分词工具,基于中科院的ictclas中文分词算法,无论是准确度还是运行效率都超过了rmmseg4j。 * 环境准备 (Windows或Linux版本都行): R下载:http://mirrors.us
01 前言 关于CNN如何和NLP结合,其实是被这篇文章(http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/)指导入门的 。 我觉得使用CNN去处理一些NLP的分类问题,是非常不错的。 主要好处有: 1、CNN能自动抽取出一些高级特征,减少了特征工程的时间 2、使用WordEmbedding技术将词汇表达为向量后,可以很方便的将文本表示为类似图片的2D向量 3、神经网络表达能力强 缺点的话,就是
关于CNN如何和NLP结合,其实是被这篇文章指导入门的 。 我觉得使用CNN去处理一些NLP的分类问题,是非常不错的。
要分析文本内容,最常见的分析方法是提取文本中的词语,并统计频率。频率能反映词语在文本中的重要性,一般越重要的词语,在文本中出现的次数就会越多。词语提取后,还可以做成词云,让词语的频率属性可视化,更加直观清晰。比如下图: 这是根据总理2014年的政府工作报告制作的可视化词云,分词和词云的制作都是用R,词频的统计用了其他软件。这个图能很直观看到,工作报告的重心是"发展",这是大方向,围绕发展的关键要素有经济建设、改革、农村、城镇等要素。不过这张图中的词语还需要进行优化,因为有些术语或词组可能被拆分成了更小的词语
要分析文本内容,最常见的分析方法是提取文本中的词语,并统计频率。频率能反映词语在文本中的重要性,一般越重要的词语,在文本中出现的次数就会越多。词语提取后,还可以做成词云,让词语的频率属性可视化,更加直观清晰。比如下图:
【人工智能头条导读】作者一年前整理了这份关于 NLP 与知识图谱的参考资源,涵盖内容与形式也是非常丰富,接下来人工智能头条还会继续努力,分享更多更好的新资源给大家,也期待能与大家多多交流,一起成长。
本文都是基于elasticsearch安装教程 中的elasticsearch安装目录(/opt/environment/elasticsearch-6.4.0)为范例
背景:分析用户在世界杯期间讨论最多的话题。 思路:把用户关于世界杯的帖子拉下来,然后做中文分词+词频统计,最后将统计结果简单做个标签云. 后续:中文分词是中文信息处理的基础,分词之后,其实还有特别多有趣的文本挖掘工作可以做,也是个知识发现的过程。 * 中文分词常用实现: 单机:R语言+Rwordseg分词包 (建议数据量<1G) 分布式:Hadoop+Smallseg库 词库:Sougou词库,Sougou输入法官网可下载 这里只先介绍单机的实现: 1、R语言:专门用于统计分析、绘图的语言 2、
3、由于版本问题,可能DicAnalysis, ToAnalysis等类没有序列化,导致读取hdfs数据出错
2021-05-09:给定数组hard和money,长度都为N;hardi表示i号的难度, moneyi表示i号工作的收入;给定数组ability,长度都为M,abilityj表示j号人的能力;每一号工作,都可以提供无数的岗位,难度和收入都一样;但是人的能力必须>=这份工作的难度,才能上班。返回一个长度为M的数组ans,ansj表示j号人能获得的最好收入。
背景:boo查询中过多的拼接bool导致报 too_many_clauses: maxClauseCount is set to 1024
Elasticsearch 实战项目中势必会用到中文分词,而中文分词器的选型包含但不限于如下开源分词器:
转载出处:https://zhuanlan.zhihu.com/p/29183128 介绍:ElasticSearch 是一个基于 Lucene 的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于 RESTful web 接口。Elasticsearch 是用 Java 开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
需求:客户给销售员自己的个人信息,销售帮助客户下单,此过程需要销售人员手动复制粘贴收获地址,电话,姓名等等,一个智能的分词系统可以让销售人员一键识别以上各种信息
这几天写完了人名识别模块,与分词放到一起形成了两层隐马模型。虽然在算法或模型上没有什么新意,但是胜在训练语料比较新,对质量把关比较严,实测效果很满意。比如这句真实的新闻“签约仪式前,秦光荣、李纪恒、仇和等一同会见了参加签约的企业家。”,分词结果:[签约/v, 仪式/n, 前/f, ,/w, 秦光荣/nr, 、/w, 李纪恒/nr, 、/w, 仇和/nr, 等/u, 一同/d, 会见/v, 了/ul, 参加/v, 签约/v, 的/uj, 企业家/n, 。/w],三个人名“秦光荣”“李纪恒”“仇和”一个不漏。一些比较变态的例子也能从容应对,比如下面:
现代的搜索引擎,一般都会提供 Suggest as you type 的功能,帮助用户在输入搜索的过程中,进行自动补全或者纠错。通过协助用户输入更加精准的关键词,提高后续搜索阶段文档匹配的程度。在 google 上搜索,一开始会自动补全。当输入到一定长度,如因为单词拼写错误无法补全,就会开始提示相似的词或者句子。
在本周,GitHub终于度过了属于它自己的十周岁生日。这个在2008年由3个来自旧金山的年轻人创建的基于Git的代码托管网站,先后超越了元老级的SourceForge和背景强大的Google Code,成为了全世界范围内最受欢迎的代码托管网站。
中文分词是中文文本处理的基础步骤,也是中文人机自然语言交互的基础模块。由于中文句子中没有词的界限,因此在进行中文自然语言处理时,通常需要先进行分词。
描述:health是一个简洁的,一行表示了来自/_cluster/health的相同的信息。
全文检索(Full-text Search):先建立索引,再对索引进行搜索的过程,搜索结果为匹配文本
分类 分布式网络爬虫包含多个爬虫,每个爬虫需要完成的任务和单个的爬行器类似,它们从互联网上下载网页,并把网页保存在本地的磁盘,从中抽取URL并沿着这些URL的指向继续爬行。由于并行爬行器需要分割下载任务,可能爬虫会将自己抽取的URL发送给其他爬虫。这些爬虫可能分布在同一个局域网之中,或者分散在不同的地理位置。 根据爬虫的分散程度不同,可以把分布式爬行器分成以下两大类: 1、基于局域网分布式网络爬虫:这种分布式爬行器的所有爬虫在同一个局域网里运行,通过高速的网络连接相互通信。这些爬虫通过同一个网络去访问外部互
在Elasticsearch中,处理倒排索引中的分词问题主要涉及两个方面:索引时的分词和查询时的分词。
最近收集的两个搜索的case,如下: 案例一: 使用 A关键词:“中国诚通控股公司”搜索,不能搜到 B结果“中国诚通控股集团有限公司” 从关键词字面上看,确实不应该出现这种问题,因为A的关键词完全被B包含,如果说搜索B,搜不到A到还可以接受,因为 在关键词越长的情况下,term之间是AND的关系,这样返回结果集就越少,这一点从Google或者其他电商的搜索都可以得到测试确认, 看到这种问题,一般情况下,都跟分词有关系,然后拿到Solr中, 先使用IK最细粒度分词测试两个关键词的分词
这篇文章事实上整合了之前文章的相关介绍,同时添加一些其他的Python中文分词相关资源,甚至非Python的中文分词工具,仅供参考。
摘要:第八届“开源中国开源世界”高峰论坛将于6月28-29日在北京航空航天大学隆重召开,本次大会特别邀请国内外知名开源项目发起人、活跃的开源布道师、有影响力的开源社区负责人等开源精英齐聚现场。
SimHash是什么 SimHash是Google在2007年发表的论文《Detecting Near-Duplicates for Web Crawling 》中提到的一种指纹生成算法或者叫指纹提取算法,被Google广泛应用在亿级的网页去重的Job中,作为locality sensitive hash(局部敏感哈希)的一种,其主要思想是降维,什么是降维? 举个通俗点的例子,一篇若干数量的文本内容,经过simhash降维后,可能仅仅得到一个长度为32或64位的二进制由01组成的字符串,这一点非常相似我们的
分词就是将句子、段落、文章这种长文本,分解为以字词为单位的数据结构,方便后续的处理分析工作。
NLP(自然语言)领域现在可谓是群雄纷争,各种开源组件层出不穷,其中一支不可忽视的力量便是jieba分词,号称要· 往期精选 ·
领取专属 10元无门槛券
手把手带您无忧上云