根据IDC在2018年底的预测显示,由于大数据、AI、物联网、5G等因素的驱动,全球的数据量在2025年将高达175ZB(1ZB=1024EB,1EB=1024PB)。在中国市场,由于AI技术在安防等领域的大规模落地与应用,IDC预计,中国将在2025年成为拥有数据量最大的地区,甚至超过整个EMEA(欧洲+中东+非洲),其中绝大部分数据是非结构化数据。
在上一篇云硬盘性能分析的教程中,为大家介绍了如何评测云硬盘的读写性能。但是,我们使用硬盘,从来不是直接读写裸设备,而是通过文件系统来管理和访问硬盘上地文件。不少朋友询问,文件系统该如何对比,又该如何选择呢?
对于一个企业大数据应用来说,搞定了大数据存储基本上就解决了大数据应用最重要的问题。Google 三驾马车的第一驾是GFS,Hadoop最先开始设计的就是HDFS,可见分布式存储的重要性,整个大数据生态计算框架多种多样,但是大数据的存储却没有太大的变化,HDFS依旧是众多分布式计算的基础。当然HDFS也有许多缺点,一些对象存储等技术的出现给HDFS的地位带来了挑战,但是HDFS目前还是最重要的大数据存储技术,新的计算框架想要获得广泛应用依旧需要支持HDFS。大数据数据量大、类型多种多样、快速的增长等特性,那么HDFS是如何去解决大数据存储、高可用访问的了?
Facebook's Haystack design paper. https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Beaver.pdf
背景 计算机硬件性能在过去十年间的发展普遍遵循摩尔定律,通用计算机的CPU主频早已超过3GHz,内存也进入了普及DDR4的时代。然而传统硬盘虽然在存储容量上增长迅速,但是在读写性能上并无明显提升,同时SSD硬盘价格高昂,不能在短时间内完全替代传统硬盘。传统磁盘的I/O读写速度成为了计算机系统性能提高的瓶颈,制约了计算机整体性能的发展。 硬盘性能的制约因素是什么?如何根据磁盘I/O特性来进行系统设计?针对这些问题,本文将介绍硬盘的物理结构和性能指标,以及操作系统针对磁盘性能所做的优化,最后讨论下基于磁盘I/O
会生成一个1000M的test文件,文件内容为全0(因从/dev/zero中读取,/dev/zero为0源)。
文件系统是操作系统中负责管理持久数据的子系统,说简单点,就是负责把用户的文件存到磁盘硬件中,因为即使计算机断电了,磁盘里的数据并不会丢失,所以可以持久化的保存文件。
**分布式存储:**通过网络使用企业中的每台机器上的磁盘空间,并将这些分散的存储资源构成一个虚拟的存储设备,数据分散的存储在企业的各个角落。
这一期我们来看一下有哪些办法可以减少linux下的文件碎片。主要是针对磁盘长期满负荷运转的使用场景(例如http代理服务器);另外有一个小技巧,针对互联网图片服务器,可以将io性能提升数倍。如果为服务器订制一个专用文件系统,可以完全解决文件碎片的问题,将磁盘io的性能发挥至极限。对于我们的代理服务器,相当于把io性能提升到3-5倍。 在现有文件系统下进行优化linux内核和各个文件系统采用了几个优化方案来提升磁盘访问速度。但这些优化方案需要在我们的服务器设计中进行配合才能得到充分发挥。 文件系统缓存lin
借助 ext4 文件系统的 打洞 功能,可以实现一个消息队列 https://gist.github.com/CAFxX/571a1558db9a7b393579
最近,留意到 MinIO 官方博客的一篇题为“在对象存储上实现 POSIX 访问接口是坏主意”的文章,作者以 S3FS-FUSE 为例分享了通过 POSIX 方式访问 MinIO 中的数据时碰到了性能方面的困难,性能远不如直接访问 MinIO。在对结果进行分析时,作者认为是 POSIX 本身存在的缺陷导致的性能问题。这个结论与我们既有经验有一定出入。
随着数据量的不断膨胀,无论是为了扩展存储容量、安全备份还是高效文件传输。外置硬盘都成为了Mac用户不可或缺的存储解决方案。然而,选择合适的硬盘格式是确保数据兼容性与访问便利性的关键一步。下面我们来看看Mac外置硬盘用什么格式,Mac外置硬盘不显示怎么办的相关内容。
国内,随着互联网的高速发展,因为各大通信公司的政策,造成了南电信北联通互通有局限性,再加上大小且质量参差不齐的运营商,在这特殊的氛围的互联互通下号称“八线合一”的机房开始崭露头角。互联网的广泛性使得网民分散在全国各地,由于全国地区的经济发展和互联网建设的不平衡,实际网民的体验往往受限于最后一公里的速度。在技术大喷井的年代,一些无聊或者有目的黑客攻击也开始涌现,无论是渗透还是DDoS攻击都非常频繁,时刻威胁着网站的安全…… 上述种种问题,作为应用服务提供商,我们要如何解决此类问题呢?归根结底就是要充分利用好C
说到异步,必然要了解的是async和await这两个关键字(异步详情点击基于任务的异步编程(Task,async,await)这篇文章进行了解),此段讲解对于初学者可以简单涉猎,接下来进入正题,在操作大文件的时候,必然要消耗大量的时间,同步情况下,必然会阻塞程序执行,所以.NET 4.5以后,对FileStream和StreamReader/Writer的读写文件方法加入了异步版本,从而在操作大文件时解放对主线程的阻塞,我们可以通过Async后缀来区分哪是异步的,如FileStream的ReadAsync()是Read()的异步版本。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-90ZtG0tw-1687771442157)(https://juicefs.com/docs/zh/assets/images/juicefs-arch-new-ab6339cb1408945cc9b70dc091c523c5.png)]
初次接触分布式文件系统,有很多迷惑。通过参考网络文章,这里进行对比一下Hadoop 分布式文件系统(HDFS)与 传统文件系统之间的关系:
保存像图片、音视频这类大文件就是对象存储。不仅有很好的大文件读写性能,还可通过水平扩展实现近乎无限容量,并兼顾服务高可用、数据高可靠。
GFS,顾名思义就是谷歌文件系统,和Big Table,Map Reduce并称谷歌三驾马车。 大部分谷歌服务的基石(Search, Cloud Drive, Gmail etc.)
Hadoop 附带了一个名为 HDFS(Hadoop Distributed File System, Hadoop分布式文件系统)的分布式文件系统,基于 Hadoop 的应用程序使用 HDFS 。HDFS 是专为存储超大数据文件,运行在集群的商品硬件上。它是容错的,可伸缩的,并且非常易于扩展。
来源:马哥教育链接:https://mp.weixin.qq.com/s/UupllldADYE0sHbRs0uouQXfS文件系统是SGI开发的高级日志文件系统,XFS极具伸缩性,非常健壮。所幸的是SGI将其移植到了Linux系统中。在linux环境下。目前版本可用的最新XFS文件系统的为1.2版本,可以很好地工作在2.4核心下。XFS文件系统简介主要特性包括以下几点:数据完全性采用XFS文件系统,当意想不到的宕机发生后,首先,由于文件系统开启了日志功能,所以你磁盘上的文件不再会意外宕机而遭到破坏了。不论目前文件系统上存储的文件与数据有多少,文件系统都可以根据所记录的日志在很短的时间内迅速恢复磁盘文件内容。传输特性XFS文件系统采用优化算法,日志记录对整体文件操作影响非常小。XFS查询与分配存储空间非常快。xfs文件系统能连续提供快速的反应时间。笔者曾经对XFS、JFS、Ext3、ReiserFS文件系统进行过测试,XFS文件文件系统的性能表现相当出众。可扩展性XFS 是一个全64-bit的文件系统,它可以支持上百万T字节的存储空间。对特大文件及小尺寸文件的支持都表现出众,支持特大数量的目录。最大可支持的文件大小为263 = 9 x 1018 = 9 exabytes,最大文件系统尺寸为18 exabytes。XFS使用高的表结构(B+树),保证了文件系统可以快速搜索与快速空间分配。XFS能够持续提供高速操作,文件系统的性能不受目录中目录及文件数量的限制。传输带宽XFS 能以接近裸设备I/O的性能存储数据。在单个文件系统的测试中,其吞吐量最高可达7GB每秒,对单个文件的读写操作,其吞吐量可达4GB每秒。XFS文件系统的使用下载与编译内核下载相应版本的内核补丁,解压补丁软件包,对系统核心打补丁下载地址:ftp://oss.sgi.com/projects/xfs/d … .4.18-all.patch.bz2对核心打补丁,下载解压后,得到一个文件:xfs-1.1-2.4.18-all.patch文件。对核心进行修补如下:# cd /usr/src/linux # patch -p1 < /path/to/xfs-1.1-2.4.18-all.patch修补工作完成后,下一步要进行的工作是编译核心,将XFS编译进Linux核心可中。首先运行以下命令,选择核心支持XFS文件系统:#make menuconfig在“文件系统“菜单中选择:<*> SGI XFS filesystem support ##说明:将XFS文件系统的支持编译进核心或 SGI XFS filesystem support ##说明:以动态加载模块的方式支持XFS文件系统另外还有两个选择:Enable XFS DMAPI ##说明:对磁盘管理的API,存储管理应用程序使用 Enable XFS Quota ##说明:支持配合Quota对用户使用磁盘空间大小管理完成以上工作后,退出并保存核心选择配置之后,然后编译内核,安装核心:#make bzImage #make module #make module_install #make install如果你对以上复杂繁琐的工作没有耐心或没有把握,那么可以直接从SGI的站点上下载已经打好补丁的核心,其版本为2.4.18。它是一个rpm软件包,你只要简单地安装即可。SGI提交的核心有两种,分别供smp及单处理器的机器使用。创建XFS文件系统完成对核心的编译后,还应下载与之配套的XFSprogs工具软件包,也即mkfs.xfs工具。不然我们无法完成对分区的格式化:即无法将一个分区格式化成XFS文件系统的格式。要下载的软件包名称:xfsprogs-2.0.3。将所下载的XFSProgs工具解压,安装,mkfs.xfs自动安装在/sbin目录下。#tar –xvf xfsprogs-2.0.3.src.tar.gz #cd xfsprogs-2.0.3src #./configure #make #make install使用mkfs.xfs格式化磁盘为xfs文件系统,方法如下:# /sbin/mkfs.xfs /dev/sda6 #说明:将分区格式化为xfs文件系统,以下为显示内容: meta-data=/dev/sda6 isize=256 agcount=8, agsize=128017 blks data = bsize=4096 blocks=1024135, imaxpct=25 = sunit=0 swidth=0 blks, unwritten=0 naming =version 2 bsize=4096 log =internal log bsize=4096 blocks=1200 realtime =none
HDFS(Hadoop Distributed File System,Hadoop分布式文件系统)最开始是作为Apache Nutch搜索引擎项目的基础架构而开发的,是Apache Hadoop Core项目的一部分。HDFS被设计为可以运行在通用硬件(commodity hardware)上、提供流式数据操作、能够处理超大文件的分布式文件系统。HDFS具有高度容错、高吞吐量、容易扩展、高可靠性等特征,为大型数据集的处理提供了强有力的工具。
一、前言 Android 应用的数据存储问题也是一个被讨论多年的老话题了,伴随 Android 从诞生到现在的 Android 10。 时至今日还有很多问题在系统侧没有被很好的解决,同大多数开发者一样,微信也遇到了很多应用存储设计问题上的困扰。 本文想借此跟大家聊聊我们遇到的问题,以及微信在存储设计上做出的一些思考和尝试。 二、微信数据存储上的问题与思考 1. 有限的内部存储 早期 Android 手机自带存储空间只有内部存储,而且空间很有限。也是因为这样的原因,应用一般要将语音、图片、视频等文件放在
文件服务器(file servers)是一种器件,它的功能就是向服务器提供文件。 它加强了存储器的功能,简化了网络数据的管理。 它一则改善了系统的性能,提高了数据的可用性,二则减少了管理的复杂程度,降低了运营费用。
**MooseFS(MFS)** **Ceph** **GlusterFS** **Lustre** **Metadata server** 单个MDS。存在单点故障和瓶颈。 多个MDS,不存在单点故障和瓶颈。MDS可以扩展,不存在瓶颈。 无,不存在单点故障。靠运行在各个节点上的动态算法来代替MDS,不需同步元数据,无硬盘I/O瓶颈。 双MDS(互相备份)。MDS不可以扩展,存在瓶颈。 **FUSE** 支持 支持 支持 支持 **访问接口** POSIX POSIX POSIX POSIX/MPI **
海量小文件问题是工业界和学术界公认的难题,大数据领域中的小文件问题,也是一个非常棘手的问题,仅次于数据倾斜问题,对于时间和性能能都是毁灭性打击。本文参考网上对于小文件问题的定义和常见系统的解决方案,给大家还原一个大数据系统中小文件问题的系统性解决方案。
对于文件系统而言,其读写的效率对整体的系统性能有决定性的影响,本文我们将通过介绍 JuiceFS 的读写请求处理流程,让大家对 JuiceFS 的特性有更进一步的了解。
解压慢跟多种因素有关,这些因素可能会影响解压缩速度,具体情况可能因系统配置、应用程序行为和用户活动而异。
但是这些都是文件被进程打开后才有的操作,那么其余文件呢???在我们的系统中有非常多的文件(一切皆文件),被打开的文件只是一小部分。没有被打开的文件实际上是在磁盘上储存的,也就是磁盘文件。 在打开文件之前,我们需要找到文件 -> 就要从磁盘中找到对应文件 -> 通过文件路径与文件名。
操作系统维护了所有进程所打开的文件列表,文件表里的每一项都代表了一个文件描述符,每当我们打开文件时,都会往该表中添加一项。
XfS文件系统是SGI开发的高级日志文件系统,XFS极具伸缩性,非常健壮。所幸的是SGI将其移植到了Linux系统中。在linux环境下。目前版本可用的最新XFS文件系统的为1.2版本,可以很好地工作在2.4核心下。
在了解什么是分布式存储之前,我们先来简单了解一下存储几十年来的大概历程。
当我们在桌面创建一个新的空文件的时候,往往都是一个0字节的空文件,那么这个空文件在不在文件系统中呢?如果在,又是否起到了占位作用呢?
XFS 是一种 Linux 日志文件系统,本文记录修改 XFS 系统属性的方法。 XFS XfS文件系统是SGI开发的高级日志文件系统,XFS极具伸缩性,非常健壮。 主要特性 数据完全性 采用XFS文件系统,当意想不到的宕机发生后,首先,由于文件系统开启了日志功能,所以你磁盘上的文件不再会意外宕机而遭到破坏了。不论目前文件系统上存储的文件与数据有多少,文件系统都可以根据所记录的日志在很短的时间内迅速恢复磁盘文件内容。 传输特性 XFS文件系统采用优化算法,日志记录对整体文件操作影响非常小。XFS查询与
本篇文章的作者为龙姐姐说的都队的李晨曦,他们团队在本次 Hackathon 比赛中构建了一个基于 TiKV 的分布式 POSIX 文件系统 TiFS,继承了 TiKV 强大的分区容错和严格一致性特性,为 TiKV 生态开辟了一个新的领域。
最近忙着给YOUZAN的数据库服务器升级系统版本,从centos6 升级到centos7。centos/redhat 7 默认将文件系统设置为xfs。咨询了很多DBA朋友,他们已经升级到7 并且使用xfs很久。于是我们也随大流打算使用xfs文件系统。
在Android手机的早期,几乎所有设备都依赖于使用microSD卡进行存储。这是由于当时的手机出厂时内部存储容量很小。但是,至少与内部闪存可以读取/写入数据的速度相比,用于存储应用程序的SD卡通常无法提供出色的用户体验。因此,越来越多地将SD卡用于外部数据存储,
有人问我,你是如何做到统一存储的?我微微一笑,大声告诉他:Ceph在手,天下我有。
作为Hadoop的分布式文件系统的HDFS,是Hadoop框架学习当中的重点内容,HDFS的设计初衷,是致力于存储超大文件,能够通过构建在普通PC设备上的集群环境,以较低成本完成大规模数据存储任务。今天的大数据入门分享,我们就主要来讲讲HDFS数据读写机制。
文件管理系统中,索引文件结构是一种常见的文件组织方式,它通过索引来实现文件内容的快速访问。在索引文件结构中,主要涉及到几个关键概念:索引结点、物理磁盘块、直接索引、一级间接索引、二级间接索引、三级间接索引。
本文隶属于专栏《1000个问题搞定大数据技术体系》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!
前面我们分析存储方案的发展的时候有提到分布式文件存储的出现是为了解决存储的三大问题:可扩展性,高吞吐量,高可靠性
文章摘要:MQ分布式消息队列大致流程在于消息的一发一收一存,本篇将为大家主要介绍下RocketMQ存储部分的架构 消息存储是MQ消息队列中最为复杂和最为重要的一部分,所以小编也就放在RocketMQ系列篇幅中最后一部分来进行阐述和介绍。本文先从目前几种比较常用的MQ消息队列存储方式出发,为大家介绍RocketMQ选择磁盘文件存储的原因。然后,本文分别从RocketMQ的消息存储整体架构和RocketMQ文件存储模型层次结构两方面进行深入分析介绍。使得大家读完本文后对RocketMQ消息存储部分有一个大致的了解和认识。 这里先回顾往期RocketMQ技术分享的篇幅(如果有童鞋没有读过之前的文章,建议先好好读下之前小编写的篇幅或者其他网上相关的博客,把RocketMQ消息发送和消费部分的流程先大致搞明白): (1)消息中间件—RocketMQ的RPC通信(一) (2)消息中间件—RocketMQ的RPC通信(二) (3)消息中间件—RocketMQ消息发送 (4)消息中间件—RocketMQ消息消费(一) (5)消息中间件—RocketMQ消息消费(二)(push模式实现) (6)消息中间件—RocketMQ消息消费(三)(消息消费重试)
起源于2003年谷歌的Google File System相关论文,随后Doug Cutting(我们下面就叫他切哥吧)基于GFS的论文实现了分布式文件系统,并把它命名为NDFS(Nutch Distributied File System)。
vdbench是一个 I/O 工作负载生成器,用于验证数据完整性和度量直接附加和网络连接的存储的性能。它是一个免费的工具,容易使用,而且常常用于测试和基准测试。
文件同步分享系统包括 Dropbox、Google Drive,也包括国内的各种网盘,比如百度网盘。总的来说,这里讨论的这个系统包含这样几个基本功能:
MooseFS是一个具备冗余容错功能的分布式网络文件系统,它将数据分别存放在多个物理服务器或单独磁盘或分区上,确保一份数据有多个备份副本。对于访问的客户端或者用户来说,整个分布式网络文件系统集群看起来就像一个资源一样。从其对文件操作的情况看,MooseFS就相当于一个类UNIX文件系统:。
作为一名专注于大数据存储与处理技术的博主,我深知Hadoop Distributed File System(HDFS)作为一款广泛应用的分布式文件系统,在大数据生态系统中的基石地位。本篇博客将结合我个人的面试经历,深入剖析HDFS的底层原理、关键特性及其故障排查方法,分享面试必备知识点,并通过示例进一步加深理解,助您在求职过程中自信应对与HDFS相关的技术考察。
领取专属 10元无门槛券
手把手带您无忧上云