首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    AI 迈进深水区,谈落地、谁能带来新解法? | 2022雷峰网「产业科技 · 最具商用价值榜」

    技术发展是一个持续叠进的过程,AI 也是如此。 经历过去 70 年的“三起两落”,近年来,人工智能行业迈进深水期,分工细化,产业落地成为主旋律,AI 与各个场景的交叉、对话不断在发生。 对不少企业而言,以前谈AI 落地,想要做一个应用,得从算法开始开发,其需要肩负的成本和代价,成为绑住他们脚步的红线。要推动AI 加速实现更广泛、更优质的落地,生产力的解放是发展的关键,抛去以往的“手工作坊”,由手工到工程化量产,从作坊到工厂到全产业链,AI 工程化也成为落地的新方向。 具体的领域,也意味着多且复杂的需求。AI

    01

    Huffman算法压缩解压缩(C)

    Huffman压缩算法是一种基于字符出现频率的编码算法,通过构建Huffman树,将出现频率高的字符用短编码表示,出现频率低的字符用长编码表示,从而实现对数据的压缩。以下是Huffman压缩算法的详细流程: 统计字符频率:遍历待压缩的数据,统计每个字符出现的频率。 构建优先队列:将每个字符及其频率作为一个结点放入优先队列(或最小堆)中,根据字符频率构建一个按频率大小排序的优先队列。 构建Huffman树:不断地从优先队列中取出频率最小的两个结点,合并为一个新结点,并将新结点重新插入到优先队列中,直到队列只剩下一个结点,即Huffman树的根结点。 生成Huffman编码:通过遍历Huffman树,从根结点到每个叶子结点的路径上的左右分支分别对应编码0和1,根据路径生成每个字符的Huffman编码。 压缩数据:根据生成的Huffman编码,将待压缩数据中的每个字符替换为对应的Huffman编码,得到压缩后的数据。 存储压缩表:将字符与对应的Huffman编码关系存储为压缩表,以便解压缩时使用。 存储压缩数据:将压缩后的数据以二进制形式存储。 在解压缩时,需要根据存储的Huffman编码表和压缩数据,使用相同的Huffman树结构进行解码,将压缩数据解压缩成原始数据,并输出原始数据。 Huffman压缩算法的优势在于可以根据数据的特征自适应地确定编码,使得出现频率高的字符拥有更短的编码,从而实现高效的数据压缩。然而,Huffman算法对于小规模数据压缩效果不佳,适用于处理较大规模的数据压缩。

    01
    领券