首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    深度学习实践:从零开始做电影评论文本情感分析

    各方面都很好,但是总感觉哪里有点欠缺,后来想想,可能是作者做得太好了,把数据预处理都做得好好的,所以你才能“20行搞定情感分析”,这可能也是学习其他深度学习工具过程中要面临的一个问题,很多工具都提供了预处理好的数据,导致学习过程中只需要调用相关接口即可。不过在实际工作中,数据的预处理是非常重要的,从数据获取,到数据清洗,再到基本的数据处理,例如中文需要分词,英文需要Tokenize, Truecase或者Lowercase等,还有去停用词等等,在将数据“喂”给工具之前,有很多事情要做。这个部分,貌似是当前一些教程有所欠缺的地方,所以才有了这个“从零开始做”的想法和系列,准备弥补一下这个缺失,第一个例子就拿《Python深度学习》这本书第一个文本挖掘例子练手:电影评论文本分类-二分类问题,这也可以归结为一个情感分析任务。

    00

    虽被BERT碾压,但还是有必要谈谈BERT时代与后时代的NLP

    2018年是NLP的收获大年,模型预训练技术终于被批量成功应用于多项NLP任务。之前搞NLP的人一直羡慕搞CV的人,在ImageNet上训练好的模型,居然拿到各种任务里用都非常有效。现在情形有点逆转了。搞CV的人开始羡慕搞NLP的人了。CV界用的还是在有监督数据上训练出来的模型,而NLP那帮家伙居然直接搞出了在无监督数据上的通用预训练模型!要知道NLP中最不缺的就是无监督的文本数据,几乎就是要多少有多少。还有个好消息是目前NLP中通用预训练模型的效果还远没达到极限。目前发现只要使用更多的无监督数据训练模型,模型效果就会更优。这种简单粗暴的优化方法对大公司来说实在再经济不过。而且,算法本身的效果也在快速迭代中。NLP的未来真是一片光明啊~

    03
    领券