AI模型部署方法 在AI深度学习模型的训练中,一般会用Python语言实现,原因是其灵活、可读性强。但在AI模型实际部署中,主要会用到C++,原因在于其语言自身的高效性。...AI模型部署框架 模型部署常见的推理框架有:ONNX、NCNN、OpenVINO、 TensorRT、Mediapipe。...通过短短几年的发展,已经成为表示深度学习模型的实际标准,并且通过ONNX-ML,可以支持传统非神经网络机器学习模型,大有一统整个AI模型交换标准的趋势。...AI模型部署平台 AI 模型部署是将训练好的 AI 模型应用到实际场景中的过程。...以下是一些常见的 AI 模型部署平台: 云端部署 云端部署是最流行的 AI 模型部署方式之一,通常使用云计算平台来托管模型和处理请求。
背景 通过示例梳理AI模型训练流程,示例比较简单,方便演示。...流程 机器学习实战步骤 定义问题 数据收集和预处理 选择算法并建立模型 训练模型 模型评估和优化 示例 定义问题 根据公开数据集预测加州房价分布 数据收集 import pandas as pd...df_housing.drop("median_house_value",axis = 1) #构建特征集X y = df_housing.median_house_value #构建标签集y 选择算法并建立模型...#导入线性回归算法模型 model = LinearRegression() #使用线性回归算法 model.fit(X_train, y_train) #用训练集数据,训练机器,拟合函数,确定参数...211157.06335417 218581.64298574 465317.31295563 ... 201751.23969631 160873.51846958 138847.26913352] 模型评估
从这个规律来看,大语言模型(简称LLM)出现后虽然霸占了所有与AI相关的关键词,吸引了所有人的注意力,但这并不代表“LLM之前无AI”。...所以,AI不是只有大模型。AI的大模型时代也 ≠ 只有大模型的AI时代。 成熟的AI,早就已经上岗了 或许你还不敢相信,现在哪怕小小的快递背后,都已经有AI技术在加持了。...然而,这些仅仅是已经成熟上岗的AI技术在英特尔®️ 平台得到的优化,英特尔的能力还远不止如此。 这就要说回大模型了。...这便是英特尔在AI大模型时代中的“加速之道”了。 还会带来怎样的变革? 纵观AI技术的发展之路,不难发现英特尔在其中履行着一条非常清晰的准则——用起来才是硬道理。...更多《英特尔平台上的行业AI实战与大模型优化》相关内容,可扫描下方海报中的二维码获取。点击原文链接,阅读英特尔《最“in”大模型》专栏的所有文章。 — 完 —
私有 AI 模型已死,私有 AI 模型万岁 翻译自 Proprietary AI Models Are Dead. Long Live Proprietary AI Models 。...因此,私有模型已死。 然后是谷歌 I/O 2023 。 Google Bard ,一个基于自己的专有数据集的生成式 AI 搜索引擎,受到好评如潮。引用最多的功能是它能够将实时数据合并到其模型中。...生成式 AI 成功的代价 事实证明,访问实时数据来构建模型是昂贵的。谷歌花费数十亿美元来构建基础设施,以实时索引网络以构建他们的生成模型,你可以打赌这将是私有的。...基础 AI 模型的未来 那么,这是否意味着每个生成式 AI 用例都需要一个基于私有实时数据构建的基础模型?否,但还有其他原因需要私有的基础模型: 私有的第一方数据集。...希望构建生成式 AI 的企业可能需要依赖大公司的基础模型,这些公司拥有支票簿来维护自己的实时数据基础设施和其他用例的开源基础模型。 企业所依赖的专有数据集也将越来越实时。
考虑一款旨在识别和分类野生动物照片的 AI 驱动的图像识别应用程序。您上传一张远足时拍摄的照片,几分钟后,该应用程序不仅识别出照片中的动物,还提供了有关其物种、栖息地和保护状态的详细信息。...这种分层方法提供了细致入微的分析,超出了单个 AI 模型的能力。 什么是模型组合? 从本质上讲,模型组合是一种机器学习策略,它结合了多个模型来解决一个复杂的难题,而单个模型无法轻松解决。...Boosting:顺序训练模型,其中每个模型都尝试纠正前一个模型所犯的错误。 Stacking:训练多个模型,然后使用一个更好的模型,该模型利用每个基础模型的优势来提高整体性能并结合它们的预测。...容器化:使用 容器部署 AI 模型可以帮助管理每个模型的依赖项和环境。容器编排工具(如 Kubernetes)可以帮助管理容器化模型的部署、扩展和网络。...但是,如上例所示,BentoML 和 BentoCloud 等平台可以通过允许开发人员高效地打包、部署和扩展多模型服务,帮助开发人员构建多个模型的 AI 应用程序。
在当前技术环境下,AI大模型学习不仅要求研究者具备深厚的数学基础和编程能力,还需要对特定领域的业务场景有深入的了解。...通过不断优化模型结构和算法,AI大模型学习能够不断提升模型的准确性和效率,为人类生活和工作带来更多便利。...AI大模型学习的理论基础 数学基础: 线性代数:AI 大模型中大量使用向量和矩阵运算,如矩阵乘法、向量点积等,用于表示和操作数据。...AI大模型在特定领域的应用 在自然语言处理领域,AI 大模型如 GPT-3 被广泛应用于文本生成、机器翻译、问答系统等。...此外,模型的性能也受到计算资源、数据质量和算法优化等因素的影响 AI大模型学习的伦理与社会影响 AI 大模型学习确实带来了一些伦理和社会问题,我们需要认真对待: 1.
但是AI就不同,AI最大的特征就是它会通过数据集来学习,会迭代,会有新的东西,新的技能产生,学习能力才是AI被称为人工智能的来源。 什么是AI模型? 了解了AI,那么什么是AI模型?...而且,AI模型是刚开始上学,就直接学习不同的专业,偏科偏到头。可能一个用在太空研究的AI模型,也搞不定在超市里算库存的事。...什么是AI大模型? 那这样,我们要做100件事,不就要训练100个不同的AI模型? 要知道,训练一个AI模型,技术复杂度并不比训练一个专业运动员低。怎么办?...这个“通识教育”就是更大规模的参数量,通过这个“小学到高中”的预训练过程,让AI模型都成为大规模预训练模型,简称“大模型”。...不过就像我们在小学到高中学习过程中会展现不同的倾向,AI大模型也并不只有一种,常见的AI大模型有NLP自然语言处理大模型、CV计算机视觉大模型、跨模态大模型和科学计算大模型。
AI 人工智能 (AI) 被认为是机器(尤其是计算机系统)对人类智能过程的模拟。这些过程包括学习(获取信息和使用信息的规则)、推理(使用规则得出近似或明确的结论)和自我纠正。...生成式AI 生成式人工智能最近变得非常流行,它被大众用来生成不同类型的内容,包括文本、图像、视频等。...生成式 AI 是人工智能 (AI) 技术的一个子集,专注于根据输入数据或从现有数据中学习的模式生成新的原创内容。...与专为分类或预测等特定任务而设计的传统 AI 模型不同,生成式 AI 模型能够创建全新的数据样本,这些样本类似于它们所接触的训练数据。它使用生成模型,这些模型根据现有数据的学习概率分布生成新内容。...Gemmi Gemini 是由 Google Deepmind 开发的 LLM(大型语言模型),能够生成文本、翻译语言和编写各种创意内容。
大模型超越AI 目前所指的大模型,是“大规模深度学习模型”的简称,指具有大量参数和复杂结构的机器学习模型,可以处理大规模的数据和复杂的问题,多应用于自然语言处理、计算机视觉、语音识别等领域。...本文将探讨大模型的概念、训练技术和应用领域,以及与大模型相关的挑战和未来发展方向。...大模型是指具有庞大参数数量的机器学习模型。传统的机器学习模型通常只有几百或几千个参数,而大模型则可能拥有数亿或数十亿个参数。...这种巨大的模型规模赋予了大模型更强的表达能力和预测能力,可以处理更为复杂的任务和数据。...更智能的模型压缩技术:模型压缩和加速技术将继续发展,以减小大模型的计算和存储开销。 更好的计算平台支持:为了支持训练和部署大模型,计算平台将继续改进,提供更强大的计算资源和工具。
下图为不同模型之间训练参数的对比: 1.1 GPT-3模型架构 实际上GPT-3 不是一个单一的模型, 而是一个模型系列. 系列中的每个模型都有不同数量的可训练参数....如何让AI实现自动打游戏? 第一步: 通过强化学习(机器学习方法)学出Policy函数, 该步骤目的是用Policy函数来控制Agent....模型选择: ChatGPT 的开发人员选择了 GPT-3.5 系列中的预训练模型, 而不是对原始 GPT-3 模型进行调优....SFT模型输出的得分较高的结果, yl代表SFT模型输出得分较低的结果, rθ代表RM模型即GPT-3模型, σ代表sigmoid函数, K代表SFT 模型为每个 prompt 生成多个输出, 这里K个任选...2个来模型训练. 2.6 使用 PPO 模型微调 SFT 模型 这一步里强化学习被应用于通过优化 RM 模型来调优 SFT 模型.
作为一名开源爱好者,我非常不喜欢知识付费或者服务收费的理念,所以便有决心写下此系列,让一般大众们可以不付费的玩转当下比较新的开源大语言模型bloom及其问答系列模型bloomz。...一、模型介绍 bloom是一个开源的支持最多59种语言和176B参数的大语言模型。...bigscience在hugging face上发布的bloom模型包含多个参数多个版本,本文中出于让大家都能动手实践的考虑,选择最小号的bloom-1b1版本,其他模型请自行尝试。...(checkpoint) #下载模型 网速足够快的情况下等一会就下载好了,但通常情况下我们得ctrl+c打断代码运行,手动下载模型存放到对应位置,即.cache\huggingface\hub\models–bigscience–bloom...下载模型地址: https://huggingface.co/bigscience/bloom-1b1/tree/main 把如上图所示链接中的五个文件(不包含这个flax_model.msgpack)
这里的 k 表示上文的窗口大小,理论上来讲 k 取的越大,模型所能获取的上文信息越充足,模型的能力越强。...这些书籍因为没有发布, 所以很难在下游数据集上见到, 更能验证模型的泛化能力. 2.4 GPT-1模型的特点 模型的一些关键参数为: 参数 取值 transformer 层数 12 特征维度 768...GPT-2并没有对GPT-1的网络结构进行过多的创新与设计, 而是使用了更多的网络参数与更大的数据集: 最大模型共计48层, 参数量达15亿. 3.1 GPT-2模型架构 在模型方面相对于 GPT-...因此, GPT-2的训练去掉了Fune-tuning只包括无监督的预训练过程, 和GPT-1第一阶段训练一样, 也属于一个单向语言模型 理解GPT-2模型的学习目标: 使用无监督的预训练模型做有监督的任务...综上, GPT-2的核心思想概括为: 任何有监督任务都是语言模型的一个子集, 当模型的容量非常大且数据量足够丰富时, 仅仅靠训练语言模型的学习便可以完成其他有监督学习的任务. 3.3 GPT-2的数据集
——尘曲 https://github.com/yisol/IDM-VTON 分享一个AI换装虚拟试穿的模型 git clone https://github.com/yisol/IDM-VTON.git
随着人工智能技术的飞速发展,生成式AI正逐渐渗透到我们的日常生活和各行各业中。从文本创作到艺术设计,从虚拟助手到智能客服,AI的身影无处不在。然而,技术的创新与应用,离不开法律的规范与引导。...为进一步保障和监管AI技术创新,我国出台了《生成式人工智能服务管理暂行办法》(以下简称《办法》),为AI技术的合规应用提供了明确的法律框架。...《办法》和《深度合成规定》构建了针对大模型的“双备案系统”,即“深度合成算法备案”和“大模型备案”。今年4月,我国又颁布了一批已备案的生成式人工智能服务信息,这标志着对AI服务管理的进一步加强。...本文将深入解析《办法》的核心要点,探讨大模型(生成式人工智能)备案的合规,帮助企业与开发者在享受AI技术红利的同时,确保每一步都符合法律规范,共同推动人工智能行业的稳健前行。...生成式AI大模型备案的要求根据《生成式人工智能服务安全基本要求》需提供以下材料:语料安全、模型安全、安全措施,以及以上的安全自评估。各个板块的重点审查内容如下图所示。
信用卡账单是否会违约,金融机构利用逻辑回归模型来评估信用卡用户是否存在违约风险,这通常涉及对用户的信用历史、交易行为等进行分析。 逻辑回归是一种用于分类问题的统计模型,特别是适合于处理二分类问题。...这个损失函数的目的是使得模型输出的概率尽可能接近真实标签。当模型预测的概率与真实标签一致时,损失函数的值会很小;反之,如果预测的概率与真实标签相差较大,则损失函数的值会比较大。...AUC(Area Under Curve)则是ROC曲线下的面积,用于量化地衡量模型的整体分类性能。AUC的取值范围在0.5到1之间,其中0.5表示模型没有区分能力,而1表示模型具有完美的分类能力。...AUC越大,说明模型在区分正负样本上的表现越好。在实际应用中,一个AUC值接近1的模型通常被认为具有较高的预测准确性和可靠性。...这样做有助于改善模型对少数类的识别能力,特别是在数据集中某些类的样本数量远少于其他类时,这种权重调整可以防止模型偏向于多数类。
简介智谱是清华大学技术成果转化公司中英双语千亿级大模型 GLM-130B对话模型 ChatGLM开源模型 ChatGLM-6BAI 提效助手智谱清言高效率代码模型 CodeGeeX多模态理解模型 CogVLM...文生图模型 CogView文生视频模型 CogVideo文生视频大模型开放平台 大模型体验中心编程调用# pip install zhipuai 请先在终端进行安装from zhipuai import...temperature= 0.95, max_tokens=1024, stream=True)for trunk in response: print(trunk)总结国内开源大模型的领先者..., 大模型领域的经典成功商业案例
本周介绍了 5 个视频相关的 SoTA 模型:VideoMAE 成功在视频模型中加入超高遮蔽率、ViS4mer 处理长视频高效又低成本、Flamingo 只需小样本就能胜任多种视觉语言任务,VDTN 用多模态的概念重新定义对话状态追踪任务...使用一些简单的设计,模型就能够有效地克服视频重建过程中由于时间相关性引起的信息泄漏问题。即使当遮挡率很高的时候(90%-95%),模型仍然可以获得良好的性能。...为了不让模型从高度相似的相邻帧学到重建的知识,模型使用非常高的遮盖率从视频中删除时间立方体。同时,这一操作也降低了编码器-解码器架构的预训练成本。...Self-Supervised Video Pre-Training 更多资料:VideoMAE:南大MCG&腾讯AI Lab 提出第一个视频版MAE框架,使用90%甚至95%遮挡,性能SOTA!...Flamingo 探索了开放式多模态任务(例如视觉问答、描述任务)以及封闭式任务(例如多项选择视觉问答),证明了该架构的单个模型就可以使用少量学习的最新技术,只需通过特定任务示例提示模型即可。
决策树的基本思想是,通过构建一个树状的图形模型,将决策过程中的各种可能情况和结果以直观的方式展现出来。...剪枝操作:在构造决策树之后,C4.5算法会进行剪枝操作,以减少模型的过拟合风险,提高模型的泛化能力。...这样的结构有助于简化模型,提高解释性。CART使用基尼系数作为特征选择的标准。基尼系数衡量的是数据集的不纯度,基尼系数越小,表示数据越纯,即分类越明确。...训练方法:使用fit方法来训练决策树模型,传入训练数据和对应的标签。...y_pred = clf.predict(X_test) 评估方法:可以使用score方法来评估模型的准确性。
背景本人自由职业,运营者AI开源项目CloudOrc/SolidUI技术实现on-premise内部的私有数据价值越来越低,已经为了做大模型价值,存储很多私有数据,再加上例如LAION 爆火,LLM爆火...开源数据AI 新的切入方向,开源数据集,对于算力的要求比较低,但是具有世界意义,是构成AI重要组成部分,LAION 就是很好的例子。...* 基于数据开发 AI 模型。Midjourney 利用 Step1 构建的数据集开发计算机视觉、自然语言处理等 AI 模型。这些模型可以完成图像识别、语义理解等任务。...* 将 AI 模型以 API 形式开放。Midjourney 将开发的 AI 模型以 API 的形式开放给客户使用。客户可以在自己的产品或服务中调用这些 API,实现相应的 AI 能力。...当用户调用 API 使用 AI 服务时,会产生更多的数据,如用户图像、文本,用户交互数据等。这些新产生的数据被 Midjourney 收集起来,输入到 Step1,不断丰富数据和提高模型效果。
这个类有许多参数可以设置,如fit_intercept(是否计算模型的截距)和normalize(是否对数据进行标准化处理)等。 训练模型:使用训练集数据调用模型的fit方法来训练模型。...进行预测:训练好模型后,使用predict方法对测试集或新数据进行预测。 评估模型:常用的评估指标包括均方误差(MSE)、决定系数(R²)等。这些指标可以帮助我们了解模型的预测性能和数据拟合程度。...损失函数 用来衡量机器学习模型性能的函数,损失函数可以计算预测值与真实值之间的误差(用一个实数来表示),误差越小说明模型性能越好。...通过最小化损失函数,模型可以学习到最佳的权重系数和偏置项,从而得到一个能够较好地预测未知数据的线性模型。 模型评估:在模型训练完成后,通常会使用测试数据集x_test来评估模型的性能。...通过调用estimator.predict(x_test)可以获取模型对测试数据的预测值,进而可以通过比较预测值和真实值来计算模型的准确性和其他性能指标。
领取专属 10元无门槛券
手把手带您无忧上云