先看我们的目标作品 ? 看着这图确实很普通,也没有隔壁 PyEcharts 浮夸 好看的动态效果。但是其实想要画出来这个图,你需要掌握以下几个代码编辑方法: 1. 绘制散点图 2....Python :3.7.4 pandas : 1.1.4 numpy : 1.19.4 matplotlib : 3.3.2 seaborn:0.9.0 # seaborn 要求必须是 0.9.0 以上版本...colors = ["green","black"] #确定标签名称列表 labels = ["Zero","One"] #代码思路: #在上一份代码的基础上加上控制气泡大小的 s 参数。...【核心】散点图>气泡图 散点图可以清晰的呈现总体样本的分布情况。 如果进阶成气泡图,便可以在此基础上增加一个维度特征。...卖个关子 亲我 别打我 今天我们把所有技术点都讲到位了,下篇文章我们用我们今天的方法去做我们的目标图(也就是下图)。我们即将用 gitub 上一份公开数据集。
关系(二)利用python绘制热图 热图 (Heatmap)简介 1 热图适用于显示多个变量之间的差异,通过颜色判断彼此之间是否存在相关性。...的heatmap函数创建 sns.heatmap(df) plt.show() 2 定制多样化的热图 自定义热图一般是结合使用场景对相关参数进行修改,并辅以其他的绘图知识。...seaborn主要利用heatmap绘制热图,可以通过seaborn.heatmap[1]了解更多用法 不同输入格式的热图 import matplotlib.pyplot as plt import...即热图的每个方块代表一个单元格 df = pd.DataFrame(np.random.random((6,5)), columns=["a","b","c","d","e"]) ax = plt.subplot2grid...g = sns.clustermap(df, standard_scale=1) # 标准化处理 plt.show() 5 总结 以上通过seaborn的heatmap快速绘制热图,并通过修改参数或者辅以其他绘图知识自定义各种各样的热图来适应相关使用场景
我们今天试着重复一下论文补充材料里的 Figure S29 image.png 这个热图是用python中的seaborn模块画的,下面介绍画图代码 导入需要用到的模块 import numpy as...np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt 读入数据集 部分数据截图如下 image.png...reindx()函数是将行按照自己制定的内容排序 [[]]是把列按照指定的内容排序 查看数据集的前5行 b73Ref.head(5) 最基本的热图 sns.heatmap(b73Ref) image.png...robust=True, square=True, linewidths=.5, cbar_kws={"shrink": .5}) image.png 添加辅助线,去掉y轴标题...0.75, xmax = 0.4) ax.axhline(y=12, color ='black', lw = 1.5, alpha = 0.75, xmax = 0.48) image.png 给坐标轴的标签赋予颜色
数据集 Seaborn 从导入开始matplotlib。请注意,使用的是matplotlib版本3.0.3,而不是最新版本,因为存在一个会破坏热图并使其无效的错误。然后,导入了seaborn。...从零延伸到大约250000的黑线是95%的置信区间。内部的黑色粗块是四分位间距,表示所有数据中约有50%位于该范围内。图的宽度基于数据的密度。...可以将其理解为该特定数据集的直方图,其中黑线是x轴,完全平滑并旋转了90度。 热图 相关矩阵可帮助了解所有功能和标签如何相互关联以及相关程度。...该pandas数据框中有一个调用的函数corr()生成相关矩阵,当把它输入到seaborn热图,得到了一个美丽的热图。设置annot为True可确保相关性也用数字定义。...带群图的箱形图 箱形图将信息显示在单独的四分位数和中位数中。与swarm图重叠时,数据点会分布在其位置上,因此根本不会重叠。
和wspace参数,它们沿图的高度和宽度指定间距,以子图大小为单位(这里,间距是子图宽度和高度的 40%。...plt.subplots:一次创建整个网格 在创建大型子图网格时,刚才描述的方法会变得相当繁琐,特别是如果你想在内部绘图上隐藏x轴和y轴标签。...在这里,我们将创建2x3子图的网格,其中同一行中的所有轴域共享其y轴刻度,并且同一列中的所有轴域共享其x轴刻度: fig, ax = plt.subplots(2, 3, sharex='col', sharey...= fig.add_subplot(grid[-1, 1:], yticklabels=[], sharex=main_ax) # 主要轴域上的散点图 main_ax.plot(x, y, 'ok'..., markersize=3, alpha=0.2) # 附加轴域上的直方图 x_hist.hist(x, 40, histtype='stepfilled', orientation
图9-5 各subplot之间没有间距 不难看出,其中的轴标签重叠了。matplotlib不会检查标签是否重叠,所以对于这种情况,你只能自己设定刻度位置和刻度标签。后面几节将会详细介绍该内容。...图9-8 用于演示xticks的简单线型图(带有标签) 要改变x轴刻度,最简单的办法是使用set_xticks和set_xticklabels。...图9-9 用于演示xticks的简单线型图 Y轴的修改方式与此类似,只需将上述代码中的x替换为y即可。轴的类有集合方法,可以批量设定绘图选项。...图9-11 2008-2009年金融危机期间的重要日期 这张图中有几个重要的点要强调:ax.annotate方法可以在指定的x和y坐标轴绘制标签。...9.2 使用pandas和seaborn绘图 matplotlib实际上是一种比较低级的工具。
我们为x轴选择一个分类列,为y轴(花瓣长度)选择一个数值列,我们看到它创建了一个为每个分类列取平均值的图。...x轴表示花瓣长度,y轴表示数据集的萼片长度。...sns.boxplot(x='species',y='sepal_length',data=data,hue='species') 7、热图 热图是数据的二维可视化表示,它使用颜色来显示变量的值。...在该图中,每个数据点表示为一个点,并且这些点的排列使得它们在分类轴上不会相互重叠。...它创建了一个坐标轴网格,这样所有数值数据点将在彼此之间创建一个图,在x轴上具有单列,y轴上具有单行。对角线图是单变量分布图,它绘制了每列数据的边际分布。
用于深入了解数据的一些独特的数据可视化技术 可视化是一种方便的观察数据的方式,可以一目了然地了解数据块。我们经常使用柱状图、直方图、饼图、箱图、热图、散点图、线状图等。...ax = df.plot.hexbin(x='sepal_width', y='sepal_length', gridsize=20,color='#BDE320') 我考虑了上一节的数据集来绘制上面的六边形分箱图...但对于标准正态分布,100% 的数据在 -3 到 3(z 分数)的范围内。在 QQ 图中,两个 x 轴值均分为 100 个相等的部分(称为分位数)。...如果我们针对 x 和 y 轴绘制这两个值,我们将得到一个散点图。 散点图位于对角线上。这意味着样本分布是正态分布。如果散点图位于左边或右边而不是对角线,这意味着样本不是正态分布的。...import seaborn as sns sns.swarmplot(data=df,x="species", y="sepal_width") 9、旭日图(Sunburst Chart) 它是圆环图或饼图的定制版本
统计功能增强:Seaborn提供了许多额外的统计功能,使得数据探索更加方便。例如,你可以使用Seaborn轻松地绘制分布图、拟合回归线、绘制核密度图等。...多变量数据可视化:Seaborn提供了一些强大的工具来可视化多变量数据。你可以使用Seaborn绘制矩阵图、热力图、聚类图等,以揭示不同变量之间的关系和模式。..."total_bill") plt.show() 图片 指定在y轴上绘图: In 19: # 水平 sns.swarmplot(data=tips, y="total_bill") plt.show...指定x轴label的顺序 ) plt.show() 图片 水平柱状图 orient参数指定水平h或者垂直v In 26: sns.barplot( data=tips, x=...=".1f") fig.set(xlabel="",ylabel="") fig.xaxis.tick_top() 图片 聚类热图sns.clustermap 基础聚类热图 In 63: iris.dtypes
plt.colorbar(heatmap) plt.show() 运行效果如下: [49n59dpjxq.png] matplotlib绘制heatmap,该方法比较繁琐,要调用很多辅助函数才能实现效果更好的热图...Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,不需要经过大量的调整就能使你的图变得精致。...如果是DataFrame,则df的index/column信息会对应到heatmap上,即df.index对应到热力图的x轴,df.columns对应到热力图的y轴 vmax,vmin:分别是热力图的颜色取值最大和最小范围...默认值是auto,如果是True,则以DataFrame的index作为x轴标签、columns作为y轴的标签。如果是False,则不添加行标签名。如果是列表,则标签名改为列表中给的内容。...如果是布尔型的DataFrame,则将DataFrame里True的位置用白色覆盖掉 ax:设置作图的坐标轴,一般画多个子图时需要修改不同子图的该值 **kwargs:All other keyword
图2:乘客“年龄”分布图。 这里x轴表示年龄,y轴表示频率。例如,对于Bins= 10的分布图,大约有50个人年龄在0到10岁之间 b.联合图 它是两个变量的组合。 这是一个二元分析的例子。...图3:“年龄”和“票价”的联合图 我们可以看到,年龄和票价之间并没有合适的线性关系。 kind = ' hex '提供了六边形图,kind = ' reg '提供了图形上的回归线。...a.条形图 这是一个二元分析的例子。 在x轴上有一个分类变量,在y轴上有一个连续变量。...图13:泰坦尼克号数据集的关联矩阵热图。 同样的矩阵现在表达了更多的信息。 另一个非常明显的例子是使用heatmap来理解缺失的值。...图14:泰坦尼克号数据中缺失值的热图。 b.聚类图 如果我们有一个矩阵数据,并想要根据其相似性对一些特征进行分组,聚类映射可以帮助我们。先看一下热图(图13),然后再看一下聚类图(图15)。
本文继续介绍数据分布型图表的绘制方法: 3 蜂巢图 蜂巢图使得每个类别数据点沿着X轴类别标签中心向两侧,同时向上均匀而对称地展开,整体较为美观,也能展现数据的分布规律。...关于蜂巢图的绘制用到了seaborn库的swarmplot方法绘制。 现有一组数据(名称为df),记录了PM2.5不同季节的浓度,每个季节有100个,现用蜂巢图表示。...x轴标签 ax.set_xlabel('season', font1) #设置图例不可见 ax.legend().set_visible(False) plt.show() 注:画布的控制语句与ax一样...,图例的调整,坐标轴的设置遵循axes对象的规定。...为了更好展现春季和冬季的浓度分布趋势,我们在以上图的基础上为春季和冬季添加一个PM2.5的密度分布图(密度分布图见上节)。
数据分布图表主要显示数据集中的数值及其出现的频率或者分布规律,包括统计直方图、核密度曲线图、箱型图、小提琴图等。...就是传入的数组需要划分为几部分。 range:x轴的范围。 density:是否设置y轴为密度(默认为每一组中的数据个数)。 log:是否设置y轴为对数格式,默认为False。...cumulative=True, alpha = 0.5) ax5.plot(bins2[:-1], n2, linestyle = '--', lw = 3, color = 'r') #适当调整子图的横纵间距...plt.subplots_adjust(wspace = 0.20, hspace = 0.08) plt.show() ---- 2 核密度估计图 核密度估计图用于显示数据在x轴连续数据的分布状况...虽然在以上统计直方图中绘制了密度图,这里介绍另外一种绘制方法——利用seaborn库的distplot函数。
通过seaborn绘制多样化的散点图 seaborn主要利用scatterplot和regplot绘制散点图,可以通过seaborn.scatterplot[1]和seaborn.regplot[2]了解更多用法...("log") ax.set_yscale("log") ax.set_title('logarithmic scale for x/y axes') fig.tight_layout() # 自动调整间距...plt.show() 8 引申-绘制曼哈顿图 # 曼哈顿图是散点图的一种变体,可联想曼哈顿鳞次栉比的大楼 # 一般用于基因相关研究,如GWAS。...每组表示一个染色体,每个点表示一个基因 # x轴为该点在染色体的位置,y轴值代表其P值的-log10,越高相关性越强 from pandas import DataFrame from scipy.stats...() # 自动调整间距 plt.show() 10 分开观察 import matplotlib.pyplot as plt import numpy as np import seaborn as
1.分布曲线 我们可以将Seaborn的分布图与Matplotlib的直方图进行比较。它们都提供非常相似的功能。这里我们画的不是直方图中的频率图,而是y轴上的近似概率密度。...使用Seaborn的配对图 对于非对角视图,图像是两个数值变量之间的散点图 对于对角线视图,它绘制一个柱状图,因为两个轴(x,y)是相同的。 5.热力图 热图以二维形式表示数据。...热图的最终目的是用彩色图表显示信息的概要。它利用了颜色强度的概念来可视化一系列的值。 我们在足球比赛中经常看到以下类型的图形, ? 足球运动员的热图 在Seaborn中创建这个类型的图。...我们将使用sn .heatmap()绘制可视化图。 当你有以下数据时,我们可以创建一个热图。 ? 上面的表是使用来自Pandas的透视表创建的。 现在,让我们看看如何为上表创建一个热图。...热图如下所示, ? 使用Seaborn创建默认热图 我们可以对上面的图进行一些自定义,也可以改变颜色梯度,使最大值的颜色变深,最小值的颜色变浅。
Python已经让你很容易就能实现可视化——只需借助可视化的两个专属库(libraries),俗称matplotlib和seaborn。听说过吗?...Seaborn:Seaborn是一个Python中用于创建信息丰富和有吸引力的统计图形库。这个库是基于matplotlib的。...Seaborn提供多种功能,如内置主题、调色板、函数和工具,来实现单因素、双因素、线性回归、数据矩阵、统计时间序列等的可视化,以让我们来进一步构建复杂的可视化。 我能做哪些不同的可视化?...我就是用下面的数据集来创建这些可视化的。 ? 导入数据集 ? 1.直方图 ? ? 2.箱线图 ? 3.小提琴图 ? 4.条形图 ? 5.折线图 ? 6.堆积柱形图 ? 7.散点图 ?...8.气泡图 ? 9.饼图 ? 10.热图 你可以尝试绘制基于两个变量的热图,如X轴为性别,Y轴为BMI,数据点为销售值。 ? ?
swarmplot()可以自己实现对数据分类的展现,也可以作为盒形图或小提琴图的一种补充,用来显示所有结果以及基本分布情况。...y,hue:数据字段变量名(如上表,date,name,age,sex为数据字段变量名) 作用:根据实际数据,x,y常用来指定x,y轴的分类名称, hue常用来指定第二次分类的数据类别(用颜色区分)...jitter : float类型,True/1 作用:当数据重合较多时,用该参数做一些调整,也可以设置间距 如,jitter = 0.1 (通俗讲,就是让数据分散开) dodge:bool 作用:若设置为...True则沿着分类轴,将数据分离出来成为不同色调级别的条带, 否则,每个级别的点将相互叠加 orient:方向:v或者h 作用:设置图的绘制方向(垂直或水平), 如何选择:一般是根据输入变量的数据类型...linewidth:float 作用:设置构图元素的线宽度 案例教程 import seaborn as sns import matplotlib.pyplot as plt #设置风格 sns.set
比较(一)利用python绘制条形图 条形图(Barplot)简介 条形图主要用来比较不同类别间的数据差异,一条轴表示类别,另一条则表示对应的数值度量。...通过seaborn绘制多样化的条形图 seaborn主要利用barplot绘制条形图,可以通过seaborn.barplot[1]了解更多用法 修改参数 import seaborn as sns import...绘制多样化的条形图 seaborn主要利用barh绘制条形图,可以通过matplotlib.pyplot.barh[2]了解更多用法 修改参数 import matplotlib as mpl import...(x_pos, bars) plt.title('增加数值文本信息') fig.tight_layout() # 自动调整间距 plt.show() 分组条形图 import numpy as np...的barplot、matplotlib的bar和pandas的bar快速绘制条形图,并通过修改参数或者辅以其他绘图知识自定义各种各样的条形图来适应相关使用场景。
Python已经让你很容易就能实现可视化——只需借助可视化的两个专属库(libraries),俗称matplotlib和seaborn。听说过吗?...Seaborn:Seaborn是一个Python中用于创建信息丰富和有吸引力的统计图形库。这个库是基于matplotlib的。...Seaborn提供多种功能,如内置主题、调色板、函数和工具,来实现单因素、双因素、线性回归、数据矩阵、统计时间序列等的可视化,以让我们来进一步构建复杂的可视化。 我能做哪些不同的可视化?...我就是用下面的数据集来创建这些可视化的。 ? 导入数据集 ? 1.直方图 ? ? 2.箱线图 ? ? 3.小提琴图 ? 4.条形图 ? ? 5.折线图 ? ? 6.堆积柱形图 ? ? 7.散点图 ?...8.气泡图 ? ? 9.饼图 ? ? 10.热图 你可以尝试绘制基于两个变量的热图,如X轴为性别,Y轴为BMI,数据点为销售值。 ? ?
点图:scatterplot 箱线图:boxplot 点图+趋势线:regplot 热图:clustermap、heatmap 多图叠加:直接连续写绘图代码 拼图:plt.subplots 0、库的安装和示例数据读取...',data=iris) plt.show() 4、热图 配色风格:https://seaborn.pydata.org/tutorial/color_palettes.html data = iris.drop...('species',axis=1) g = sns.clustermap(data, cmap='viridis') plt.show() 热图:sns.heatmap(data,cmap='coolwarm...='black') plt.title('Sepal Length Distribution') plt.show() 6、图片设置(matplotlib) 更改x/y轴标题,图片标题 sns.regplot...axes 表示「坐标系统」,如果是二维图表,axes 会包含两个坐标轴 (axis )、如果是三维图表,axes 会包含三个坐标轴(axis),依此类推,在一个 figure 之中,可以设定多个 axes
领取专属 10元无门槛券
手把手带您无忧上云