79, 3, 35, 1],
[7, 80, 4, 36, 2]],
[[5, 78, 2, 34, 0],
[6, 79, 3, 35, 1],
[7, 80, 4, 36, 2]]])
>>> x.ndim...可以通过tensor的ndim属性查看轴的个数。
Shape形状:数字元组,描述张量各个轴上的维度。张量维度为(),向量维度为(5,),2D张量维度(3,5),3D张量维度(3,3,5)....与逐元素操作相反,点积整合输入张量的所有条目。...基于梯度的优化算法
神经网络层对输入进行的数学转换为:
\(output = relu(dot(W, input) + b)\)
张量\(W\)和张量\(b\) 是网络层的参数,被称为网络层的权重系数或者可训练参数...随机梯度下降
一个可微分函数,理论上能够找到它的最小值:最小值点导数为0,所以需要找到所有导数为0的点,然后相互比较找到最小值。
神经网络中,意味着找到一组权重值,使损失函数最小。