Description Difficulty: Hard Tag: Sql The Trips table holds all taxi trips....when a.status = 'cancelled_by_client' then 1 else 0 end) /count(1), 2) as 'Cancellation Rate' from trips...= 'completed' then 1 else 0 end) /count(1), 2) as 'Cancellation Rate' from trips a where exists (select...when a.status = 'cancelled_by_client' then 1 else 0 end) /count(1), 2) as 'Cancellation Rate' from trips...= 'completed' then 1 else 0 end) /count(1), 2) as 'Cancellation Rate' from trips a left join users d
Trips and Users Desicription The Trips table holds all taxi trips....= 'completed', TRUE, null)) / count(*)), 2) as 'Cancellation Rate' from Trips t where t.Client_Id in
(Creative Commons) LeetCode-262.Trips and Users 262.Trips and Users SQL Schema Table...Trips Table Users Requiement Solution 262.Trips and Users 原题链接:https://leetcode.com/problems/trips-and-users.../ SQL Schema Create table If Not Exists Trips (Id int, Client_Id int, Driver_Id int, City_Id int, Status...insert into Trips (Id, Client_Id, Driver_Id, City_Id, Status, Request_at) values ('1', '1', '10', '1...The Trips table holds all taxi trips.
那么倒着维护就只用考虑删除操作,如果一个点不合法的话就把它删掉,然后考虑与他相邻的点
UNION ALL select trips.city_b_id, trips.trip_id, tj.total_price_in_eur + trips.price_in_eur...from trip_journey tj join trips on tj.city_id = trips.city_a_id join cities city_a on trips.city_a_id...= city_a.city_id join cities city_b on trips.city_b_id = city_b.city_id join trips return_trips...on trips.city_b_id = return_trips.city_a_id and return_trips.city_b_id = 0 where tj.total_price_in_eur...select * from trip_journey where is_cycle=false; join trips return_trips on trips.city_b_id = return_trips.city_a_id
1. 1094拼车 class Solution: def carPooling(self, trips: List[List[int]], capacity: int) -> bool:...max_val = 0 for i in range(len(trips)): max_val = max(max_val, trips[i][2])...diff = [0]*(max_val+2) for i in range(len(trips)): diff[trips[i][1]] += trips[i][...0] diff[trips[i][2]] -= trips[i][0] sum_val = 0 flag = True for
SELECT pickup_street1, pickup_street2, dropoff_street1, dropoff_street2, trips_medallion, trips_pickup_datetime..., trips_dropoff_datetime, ROUND(trips_avg_mph,4) AS avg_mpg, ROUND(trips_trip_duration_hours,4) AS...num_hours FROM [taxi_strava.joined_geohash_geonames] WHERE trips_geohashed_dropoff = 'dr5ru2'...AND trips_geohashed_pickup = 'dr5rvj' ---- 点击文末 “阅读原文” 获取全文完整代码数据资料。
(6)检查OD信息 # 验证数据 # 选择trips的22334号车 trips_22396 = trips[trips['VehicleNum'] == 22396].sort_values("EndTime...") trips_22396 3、进一步筛选数据 (1)筛选行程时间大于1分钟的数据 # 计算行程时间 trips['TripTime'] = (trips['EndTime'] - trips['StartTime...']).dt.total_seconds() / 60 # 分钟 # 选择行程时间大于等于1分钟的行程 trips = trips[trips['TripTime'] >= 1] len(trips)...(2)筛选起终点不同的数据 # 2.起点终点相同 # 选择起点终点不相同的行程 trips = trips[(trips['StartLng'] !...= trips['EndLng']) | (trips['StartLat'] !
hoodie:trips->connect --path /app/uber/trips 16/10/05 23:20:37 INFO model.HoodieTableMetadata: Attempting...loaded hoodie:trips-> 连接到数据集后,便可使用许多其他命令。...hoodie:trips->help * !...Hudi提供以下CLI来支持 取消调度压缩 hoodie:trips->compaction unscheduleFileId --fileId .......以下CLI支持此功能 hoodie:trips->compaction unschedule --compactionInstant .....
SELECT pickup_street1, pickup_street2, dropoff_street1, dropoff_street2, trips_medallion, trips_pickup_datetime..., trips_dropoff_datetime, ROUND(trips_avg_mph,4) AS avg_mpg, ROUND(trips_trip_duration_hours,4) AS...num_hoursFROM [taxi_strava.joined_geohash_geonames]WHERE trips_geohashed_dropoff = 'dr5ru2' AND trips_geohashed_pickup
项目九: --code-- --建表并插入数据 CREATE TABLE IF NOT EXISTS Trips ( Id INT, Client_Id INT, Driver_Id...Users_Id INT, Banned VARCHAR(50), Role ENUM('client', 'driver', 'partner') ); TRUNCATE TABLE Trips...; INSERT INTO Trips (Id, Client_Id, Driver_Id, City_Id, Status, Request_at) VALUES ('1', '1', '10', '...1', 'completed', '2013-10-01'); INSERT INTO Trips (Id, Client_Id, Driver_Id, City_Id, Status, Request_at...) VALUES ('2', '2', '11', '1', 'cancelled_by_driver', '2013-10-01'); INSERT INTO Trips (Id, Client_Id
这儿有一份行程计划表 trips[][],其中 trips[i] = [num_passengers, start_location, end_location] 包含了你的第 i 次行程信息: 必须接送的乘客数量...示例 1: 输入:trips = [[2,1,5],[3,3,7]], capacity = 4 输出:false 示例 2: 输入:trips = [[2,1,5],[3,3,7]], capacity...= 5 输出:true 示例 3: 输入:trips = [[2,1,5],[3,5,7]], capacity = 3 输出:true 示例 4: 输入:trips = [[3,2,7],[3,7,9...== 3 1 trips[i][0] <= 100 0 trips[i][1] trips[i][2] <= 1000 1 <= capacity <= 100000 来源:力扣(LeetCode...] = {0}, i; for(i = 0; i trips.size(); ++i) { s[trips[i][1]] += trips[i][0
,) path2 = "taxi+_zone_lookup.parquet" df_zone = pl_read_parquet(path2,) return df_trips...Polars dataframe """ df= pl.scan_parquet(path,) return df 转换函数 def transformation(df_trips..., df_zone): """ Proceed to several transformations """ df_trips= mean_test_speed_pl...(df_trips, ) df = df_trips.join(df_zone,how="inner", left_on="PULocationID", right_on="LocationID..., df_zone def transformation(df_trips, df_zone): df_trips = mean_test_speed_dask(df_trips)
示例 1: 输入:trips = [[2,1,5],[3,3,7]], capacity = 4 输出:false 示例 2: 输入:trips = [[2,1,5],[3,3,7]], capacity...= 5 输出:true 提示: 1 trips.length <= 1000 trips[i].length = 3 1 <= numPassengers_{i} <= 100 0 <= from...对于每个 trips[i] = (c, a, b) ,我们需要对 [a, b) 范围内的 cnt[j] 进行加 c 操作。...处理完 trips 后,检查所有站点的乘客人数,根据是否满足 capacity 限制返回答案。 因此,这是一个关于「区间修改,单点查询」的经典问题,可使用「差分」求解。...处理完 trips 后,对差分数组 nums 进行前缀计算(可直接复用 nums,进行原地计算),便可得到各个站点的乘客数量,与 capacity 比较得出答案。
SELECT pickup_street1, pickup_street2, dropoff_street1, dropoff_street2, trips_medallion, trips_pickup_datetime..., trips_dropoff_datetime, ROUND(trips_avg_mph,4) AS avg_mpg, ROUND(trips_trip_duration_hours,4) AS...num_hours FROM [taxi_strava.joined_geohash_geonames] WHERE trips_geohashed_dropoff = 'dr5ru2'...AND trips_geohashed_pickup = 'dr5rvj' ---- 本文选自《基于出租车GPS轨迹数据的研究:出租车行程的数据分析》。
另给你一个二维整数数组 trips ,其中 trips[i] = [starti, endi] 表示 从节点 starti 开始第 i 次旅行,并通过任何你喜欢的路径前往节点 endi 。...2.初始化查询数组:根据trips初始化查询数组,将每个旅行的起点和终点加入到对应节点的查询数组中。 3.初始化并查集:初始化一个并查集,用于保存节点的父节点信息和标签。...) lcs := make([]int, m) for i := 0; i < m; i++ { if trips[i][0] == trips[i][1] {...lcs[i] = trips[i][0] } else { queries[trips[i][0]] = append(queries[trips[i][0]],...[]int{trips[i][1], i}) queries[trips[i][1]] = append(queries[trips[i][1]], []int{trips[i
") spark.sql("select fare, begin_lon, begin_lat, ts from hudi_trips_snapshot where fare > 20.0").show...) as commitTime from hudi_trips_snapshot order by commitTime").map(k => k.getString(0)).take(50) val...load(basePath) tripsIncrementalDF.createOrReplaceTempView("hudi_trips_incremental") spark.sql("select...`_hoodie_commit_time`, fare, begin_lon, begin_lat, ts from hudi_trips_incremental where fare > 20.0...`_hoodie_commit_time`, fare, begin_lon, begin_lat, ts from hudi_trips_point_in_time where fare > 20.0
Trips 表记录了各个出租车的行程信息。每段行程有唯一键(Id) 。...两个表的联结关系:Trips 表(Client_Id 、 Driver_Id) 和 Users 表中 Users_Id 的联结。 写一段 SQL 语句查出非禁止用户的取消率。 ...取消率的计算方式如下:(被司机或乘客取消的非禁止用户生成的订单数量) / (非禁止用户生成的订单总数) 参考答案: 1.多表联结,找出非禁止的用户 select * from trips left...1 else 0 end) / count(trips.status) from trips left join (select users_id from users where banned =...= 'no') as driver on (trips.Driver_Id = driver.users_id); group by trips.request_at;
hudi-spark-bundle,如果使用spark-avro2.12,相应的需要使用hudi-spark-bundle_2.12 进行一些前置变量初始化 # pyspark tableName = "hudi_trips_cow..." basePath = "file:///tmp/hudi_trips_cow" dataGen = sc....") spark.sql("select fare, begin_lon, begin_lat, ts from hudi_trips_snapshot where fare > 20.0").show...") spark.sql("select `_hoodie_commit_time`, fare, begin_lon, begin_lat, ts from hudi_trips_incremental...") spark.sql("select `_hoodie_commit_time`, fare, begin_lon, begin_lat, ts from hudi_trips_point_in_time
这儿有一份行程计划表 trips[][],其中 trips[i] = [num_passengers, start_location, end_location] 包含了你的第 i 次行程信息: 必须接送的乘客数量...示例 1: ❝输入:trips = [[2,1,5],[3,3,7]], capacity = 4 输出:false ❞ 示例 2: ❝输入:trips = [[2,1,5],[3,3,7]], capacity...= 5 输出:true ❞ 提示: 你可以假设乘客会自觉遵守 “先下后上” 的良好素质 trips.length <= 1000 1 trips[i][0] <= 100 题目分析 这道题实际上就是问...代码实现Map版 public boolean carPooling( int[][] trips, int capacity) { // 使用TreeMap 是为了让元素根据key...而「拼车」这道题,trips[i][j],在j位置,车到站了,乘客就下车了,再坐一站就过站了... 总之,两道题本质是完全一样的,只不过略微有些细节不同。 ? END
领取专属 10元无门槛券
手把手带您无忧上云