首页
学习
活动
专区
圈层
工具
发布

基于JAX的大规模并行MCMC:CPU25秒就可以处理10亿样本

JAX 的表现出乎所有人的意料,在极端情况下,最大性能可提高 20 倍。由于 JAX 的 JIT 编译开销,Numpy 在少样本、少量链的情况下会胜出。...我报告了 tensorflow probability (TFP) 的结果,但请记住,这种比较是不公平的,因为它实现的随机游走 metroplis 比我们的包含更多的功能。...Tensorflow Probability 对于 TFP,我们使用库中实现的随机游走 Metropolis 算法: from functools import partial import numpy...只有当样本的数量变得很大,并且总抽样时间取决于抽取样本的时间时,你才开始从编译中获益。 没有什么神奇的:JIT 编译意味着一个明显的、但不变的计算开销。 我建议在大多数情况下使用 JAX。...如 Hamiltonian Monte Carlo 这样的高效抽样算 Uber 优步的团队开始和 JAX 在 Numpyro 上合作。

1.8K00

如何使用Python找出矩阵中最大值的位置

这个库为我们提供了用于处理数组和矩阵的功能。然后我们使用np.random.randint(10, 100, size=9)函数随机生成了一个包含9个10到100之间随机整数的一维数组。...我们通过传入(3,3),将一维数组转换为3行3列的二维数组。然后,代码使用print(a)打印出了重塑后的二维数组a。这将显示形状为3行3列的矩阵,其中的元素为随机生成的整数。...通过使用np.where()函数,可以一次性找到数组中所有满足条件的元素的位置,而不仅仅是最大值。代码逻辑简单明了,易于理解和实现。...缺点:使用了两次数组重塑操作,可能会带来一定的性能开销,特别是在处理更大的数组时。只考虑了数组中最大值的位置,没有处理多个元素具有相同最大值的情况。...在选择使用哪一段代码时,可以根据具体需求和性能考虑做出选择。我正在参与2023腾讯技术创作特训营第三期有奖征文,组队打卡瓜分大奖!

2.1K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    1000+倍!超强Python『向量化』数据处理提速攻略

    当然,根据数据集的不同,库文件、硬件版本的不同,所以实际结果可能会有所不同。 那么什么是向量化? 简而言之,向量化是一种同时操作整个数组而不是一次操作一个元素的方法,这也得益于Numpy数组。...但没有成功。if语句试图确定Series作为一个整体的真实性,而不是比较Series中的每个元素,所以这是错误的。 2 numpy.where() 语法很简单,就像Excel的IF()。...所以在这种情况下,将坚持使用np.where()! 一些人认为这更快:使用index设置,但事实证明它实际上不是向量化!...你可以调用np.where在任何情况下,代码长了就变得有点难读了 实际上有一个函数专门可以做多重条件的向量化,是什么呢? 5 numpy.select() 向量化if...elif...else。...np.select将按从前到后的顺序对每个数组求值,当数据集中的某个给定元素的第一个数组为True时,将返回相应的选择。所以操作的顺序很重要!像np.where。

    7.6K41

    再见了,Numpy!!

    与其他库的集成:NumPy可以与许多其他数据分析和机器学习库(如Pandas、SciPy、Scikit-learn、TensorFlow和PyTorch)无缝集成,形成了Python科学计算的核心。...numpy.where(): 根据条件返回数组中的索引。...查找最小元素的索引 min_index = np.argmin(initial_array) # 输出:1 使用 numpy.where() 根据条件返回数组中的索引 查找数组中所有大于3的元素的索引...这些代码示例展示了深度副本和视图(浅副本)之间的区别:深度副本不影响原始数组,而视图的修改会影响原始数组。 14. 条件逻辑 numpy.where(): 用于基于条件选择数组元素。..., 3, 4, 5, -1, -1, -1, -1, -1] 使用复合条件进行选择: 找出数组中所有大于3且小于8的元素的位置 indices_between_3_and_8 = np.where

    62910

    20个能够有效提高 Pandas数据分析效率的常用函数,附带解释和例子

    Sample Sample方法允许我们从DataFrame中随机选择数据。当我们想从一个分布中选择一个随机样本时,这个函数很有用。...where函数首先根据指定条件定位目标数据,然后替换为指定的新数据。...Isin 在处理数据帧时,我们经常使用过滤或选择方法。Isin是一种先进的筛选方法。例如,我们可以根据选择列表筛选数据。...Merge Merge()根据共同列中的值组合dataframe。考虑以下两个数据: ? 我们可以基于列中的共同值合并它们。设置合并条件的参数是“on”参数。 ?...例如,如果我们想将每个元素乘以一个数字,我们不需要也不应该使用applymap函数。在这种情况下,简单的矢量化操作(例如df*4)要快得多。 然而,在某些情况下,我们可能无法选择矢量化操作。

    6.6K30

    机器学习速查笔记-Numpy篇

    numpy np.unique(A) 对于一维数组或者列表,unique函数去除其中重复的元素,并按元素由大到小返回一个新的无元素重复的元组或者列表 A = [1,1,2,3,4,4,5,5,6] a...replace : 布尔参数,可选参数 (决定采样中是否有重复值) p :一维数组参数,可选参数 (对应着a中每个采样点的概率分布,如果没有标出,则使用标准分布。)...,若为一维DataFrame或Series则元组第二项维空(其实就是只有一个元素的元组) 例(5,) reshpae(方法) 是数组对象中的方法,用于改变数组的形状,也可以用来改变数据的维度,如1D->...,这三个输入参数都是array_like的形式;而且三者的维度相同 当conditon的某个位置的为true时,输出x的对应位置的元素,否则选择y对应位置的元素; 如果只有参数condition,则函数返回为...true的元素的坐标位置信息; numpy.where()分两种调用方式: 三个参数np.where(cond,x,y):满足条件(cond)输出x,不满足输出y>>> aa = np.arange(10

    93030

    数据可视化入门

    ,快速、节省空间 矩阵运算,无需循环,可完成类似Matlab中的矢量运算 线性代数、随机数生成 ndarray,N维数组对象(矩阵) 所有元素必须是相同类型 ndim属性,维度个数 shape...0或全1数组 注意:第一个参数是元组,用来指定大小,如(3,4) empty不是总是返回全0,有时返回的是未初始的随机值 创建ndarray...数据类型 dtype, 类型名+位数,如 float64, int32 转换数组类型 - astype 矢量化 矢量运算,相同大小的数组键间的运算应用在元素上 矢量和标量运算,“广播”— 将标量...) multiply,元素相乘 divide, 元素相除 np.where 矢量版本的三元表达式 x if condition else y np.where(condition, x,...np.all和np.any all,全部满足条件 any,至少有一个元素满足条件 np.unique 找到唯一值并返回排序结果 操作文本文件 读取 - np.loadtxt

    1.7K10

    语义分割步骤_实时语义分割

    切割的图片大小根据服务器性能来看,12G的GPU切为256或512的比较合适一些。  ...切割的时候最好有重叠的切割,至于重叠率可以根据实际情况自己做一些尝试,这样可以尽量避免将要识别的物体切割,导致模型训练时不能很好地识别该类物体。...当数据集较少,以及数据没有实际场景那么丰富的时候,比如实际场景中图片色彩可能偏红可能偏蓝,但是拿到的训练数据都是偏红的,那就需要对图片做图像增强,将色彩调整为偏蓝加入训练集。  ...一般而言,训练模型为了增加模型的适应性,都需要做图像增强,扩充图像的多样性。 pytorch做图像增强,tensorflow做图像增强。...=True) # 获取最终label result = np.argmax(result, axis=2).astype(np.uint8) return result 2.4.2 CRF条件随机场

    70430

    高效数据处理的Python Numpy条件索引方法

    通过使用逻辑运算符,如&(与)、|(或)等,可以构建更为灵活的条件。...这种组合条件可以根据不同需求灵活地选择数组中的元素。 条件索引的高级应用 除了基本的筛选操作,Numpy的条件索引还可以用于修改数组中的元素。...这种基于条件的元素修改在数据清洗和处理过程中非常有用。 条件赋值和np.where np.where是Numpy中的一个强大函数,基于条件来进行选择操作。...> 5, 1, 0) print("条件赋值后的数组:", result) 在这里,np.where根据条件arr > 5来决定数组中每个位置的值。...使用条件arr_2d > 5提取了数组中所有大于5的元素。结果是一个一维数组,其中包含了满足条件的所有元素。 基于条件索引选择行或列 有时,需要基于某些条件来选择多维数组中的特定行或列。

    67210

    Python数据分析作业一:NumPy库的使用

    二、题目及答案解析 1、导入Numpy包并设置随机数种子为666 import numpy as np np.random.seed(666) 2、创建并输出一个包含12个元素的随机整数数组r1,元素的取值范围在...()函数生成一个包含 12 个元素的随机整数数组,其中30是生成随机整数的最小值(包含),100是生成随机整数的最大值(不包含),12是生成的随机整数数组的长度。...输出结果: [[75 60] [44 93]] 8、找到r1数组中值大于等于90的元素的位置(有难度,提示:使用np.where函数) 要求输出后: row,col = np.where(r1>=90...np.where(r1 >= 90)返回一个元组,其中第一个数组是符合条件的元素所在的行的索引,第二个数组是符合条件的元素所在的列的索引。...rows = pos // r5.shape[1]:根据位置索引计算每个元素在原矩阵中的行坐标。 cols = pos % r5.shape[1]:根据位置索引计算每个元素在原矩阵中的列坐标。

    39600

    Numpy基础知识回顾

    数据的分组运算(聚合、转换、函数应用等)。 pandas提供了一些NumPy所没有的领域特定的功能,如时间序列处理等。...多数情况下,它们直接映射到相应的机器表示,这使得“读写磁盘上的二进制数据流”以及“集成低级语言代码(如C、Fortran)”等工作变得更加简单。...在数据分析工作中,where通常用于根据另一个数组而产生一个新的数组。假设有一个由随机数据组成的矩阵,你希望将所有正值替换为2,将所有负值替换为-2。...不像某些语言(如MATLAB),通过*对两个二维数组相乘得到的是一个元素级的积,而不是一个矩阵点积。...我们说这些都是伪随机数,是因为它们都是通过算法基于随机数生成器种子,在确定性的条件下生成的。

    2.4K10

    NumPy 秘籍中文第二版:三、掌握常用函数

    这些函数的说明如下: 函数 描述 ceil() 计算数组元素的上限 modf() 返回浮点数数字的分数和整数部分 where() 根据条件返回数组索引 ravel() 返回一个扁平数组 take() 从数组中获取元素...它们的描述如下: 函数 描述 diff() 计算离散差。 默认情况下是一阶。 sign() 返回数组元素的符号。 eig() 返回数组的特征值和特征向量。...它返回直方图值和桶的边界。 polyfit()函数将数据拟合给定阶数的多项式。 在这种情况下,我们选择了线性拟合。 我们发现了幂律法-您必须谨慎地提出此类主张,但证据看起来很有希望。...该函数根据条件返回元素: buys = np.compress(logreturns < pullback, close) sells = np.compress(logreturns > breakout...但是,我们没有基准可以告诉我们所获得的结果是否良好。 在这种情况下,通常以我们应该能够击败随机过程为前提进行随机交易。 我们将从交易年度中随机抽出几天来模拟交易。

    90320

    如何训练孪生神经网络

    这可以通过上图中相同颜色的点的聚类看到——图中的一些聚类是相互叠加的,这是由于PCA将其简化为2d。其他可视化方法,如t-SNE图,或减少到更高的维度,可以在这种情况下提供帮助。...为了确定三角形实际上应该是一个十字形还是一个正方形,我们为每个类别随机选择一个嵌入来进行测量;选择了错误的十字和左下角的正方形(均带圆圈)。...如前所述,我们将为此使用Python,Keras和TensorFlow 1.14,尽管实际上并没有阻止此代码转换为在其他框架(如PyTorch)中使用的代码;我使用TensorFlow是出于个人喜好,而不是因为它更适合制作...第一个create_batch()通过随机选择两个类标签(一个用于Anchor / Positive和一个用于Negative)来生成三元组,然后为每个随机选择一个类示例。...如果本文前面讨论的蛾的例子令人困惑,希望使用MNIST的相同图更清晰。该代码随机选择了第2类测试图像进行分类,并将其与支持集中所有其他类的原型进行比较。

    1.7K30

    Python Numpy布尔数组在数据分析中的应用

    在Numpy中,布尔数组可以用于数据的过滤、选择特定条件下的元素,或在进行元素替换时充当条件掩码。 生成布尔数组 首先,来看一个简单的示例,通过条件比较生成一个布尔数组。...Numpy中的布尔索引 布尔索引是Numpy中一个非常强大的功能,通过布尔索引,可以根据布尔数组的值选择原始数组中的元素,从而实现数据的过滤和筛选。...根据多个条件筛选数据 在一些情况下,可能需要根据多个条件来筛选数据,例如筛选出成绩大于60且小于90的学生。...67 89 32 76 12 90] 替换后的数组: [ 0 67 89 0 76 0 90] 在这个示例中,使用 np.where() 函数根据条件替换了数组中的部分元素。...根据条件生成新数组 还可以使用 where 函数根据条件生成一个全新的数组,例如将数组中大于60的元素增加10,其余元素保持不变。

    53510

    NumPy从入门到放弃

    NumPy主要是围绕Ndarray对象展开,通过NumPy的线性代数库对其进行一系列操作如切片索引、广播、修改数组(形状、维度、元素的增删改)、连接数组等,以及对多维数组的点积等。...()可以实现对一个现有数组,除去其中重复的元素,返回一个没有重复元素的一维数组,且这个方法不会改变原数组,代码如下: arr = np.array([[1, 1, 2, 3],[1, 22, 34, 5...()可以对数组进行筛选,有两种用法: 1、np.where(condition, x, y):x, y是两个数组,condition指选择条件,若满足条件则输出x,否则,输出y; 2、np.where(...condition):condition是一个条件,输出数组中满足条件的下标。...np.linalg模块实现了许多矩阵的基本操作,如:求对角线元素,求对角线元素的和(求迹)、矩阵乘积、求解矩阵行列式等。

    39110

    特征选择与特征提取最全总结

    嵌入法 嵌入法是一种让算法自己决定使用哪些特征的方法,即特征选择和算法训练同时进行。在使用嵌入法时,我们先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据权值系数从大到小选择特征。...SelectFromModel是一个元变换器,可以与任何在拟合后具有coef_,feature_importances_ 属性或参数中可选惩罚项的评估器一起使用(比如随机森林和树模型就具有属性feature_importances...然后,它根据自己保留或剔除特征的顺序来对特征进行排名,最终选出一个最佳子集。 另外还有一个RFECV通过交叉验证的方式执行RFE,以此来选择最佳数量的特征。...特征提取从一组初始测量数据开始,并构建具有信息性和非冗余性的派生值(特征),促进后续的学习和泛化步骤,在某些情况下还会导致更好的人类解释。...,即所谓的特征,这些特征描述了时间序列的基本特征,如峰数、平均值或最大值或更复杂的特征,如时间反转对称统计。

    5.1K23
    领券