首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何用pyTorch改造基于Keras的MIT情感理解模型

在这篇文章中,我将详细说明在移植过程中出现的几个有趣的问题: 如何使用自定义激活功能定制pyTorch LSTM PackedSequence对象的工作原理及其构建 如何将关注层从Keras转换成pyTorch...如何在pyTorch中加载数据:DataSet和Smart Batching 如何在pyTorch中实现Keras的权重初始化 首先,我们来看看torchMoji/DeepMoji的模型。...为了在GPU上并行计算这样一个批次,我们希望: 尽可能多地并行处理这个序列,因为LSTM隐藏状态依赖于每个序列的前一个时间步长,以及 以正确的时间步长(每个序列的结尾)停止每个序列的计算。...这些数据集有着不同的长度和某些不平衡的种类,所以我们想设计这么一个批量采样器: 在预先定义的样本数中收集批次,这样我们的训练过程就可以不依赖于批次的长度 能够从不平衡的数据集中以平衡的方式进行采样。.../Theano代码移植到pyTorch的过程中,最后需要注意的事情是对权重的初始化。

96620

理解情感 :从 Keras 移植到 pyTorch

在这篇文章中,我将详细说明在移植过程中出现的几个有趣的问题: 如何使用自定义激活功能定制pyTorch LSTM PackedSequence对象的工作原理及其构建 如何将关注层从Keras转换成pyTorch...如何在pyTorch中加载数据:DataSet和Smart Batching 如何在pyTorch中实现Keras的权重初始化 首先,我们来看看torchMoji/DeepMoji的模型。...为了在GPU上并行计算这样一个批次,我们希望: 尽可能多地并行处理这个序列,因为LSTM隐藏状态依赖于每个序列的前一个时间步长,以及 以正确的时间步长(每个序列的结尾)停止每个序列的计算。...这些数据集有着不同的长度和某些不平衡的种类,所以我们想设计这么一个批量采样器: 在预先定义的样本数中收集批次,这样我们的训练过程就可以不依赖于批次的长度 能够从不平衡的数据集中以平衡的方式进行采样。.../Theano代码移植到pyTorch的过程中,最后需要注意的事情是对权重的初始化。

4.4K00
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【深度学习 | LSTM】解开LSTM的秘密:门控机制如何控制信息流

    在LSTM层中,有三个门控单元,即输入门、遗忘门和输出门。这些门控单元在每个时间步上控制着LSTM单元如何处理输入和记忆。...然后,使用这些门的权重对前一时刻的记忆单元 c_{t-1} 进行更新,计算出当前时刻的记忆单元 c_t ,并将它和当前时刻的输入 x_t 作为LSTM的输出 y_t 。...在LSTM层中,每个时间步上的计算涉及到许多参数,包括输入、遗忘和输出门的权重,以及当前时间步和前一个时间步的输出和记忆之间的权重。...因此,return_sequences的默认值为False,如果需要输出每个时间步的LSTM的输出,则需要将其设置为True。 这些参数的不同设置将直接影响到 LSTM 层的输出和学习能力。...=False,#如果为True,则批次中索引i的每个样本的最后状态将用作下一个批次中索引i的样本的初始状态。

    1.1K20

    【深度学习 | LSTM】解开LSTM的秘密:门控机制如何控制信息流

    在LSTM层中,有三个门控单元,即输入门、遗忘门和输出门。这些门控单元在每个时间步上控制着LSTM单元如何处理输入和记忆。...然后,使用这些门的权重对前一时刻的记忆单元$c_{t-1}$进行更新,计算出当前时刻的记忆单元$c_t$,并将它和当前时刻的输入$x_t$作为LSTM的输出$y_t$。...在LSTM层中,每个时间步上的计算涉及到许多参数,包括输入、遗忘和输出门的权重,以及当前时间步和前一个时间步的输出和记忆之间的权重。...因此,return_sequences的默认值为False,如果需要输出每个时间步的LSTM的输出,则需要将其设置为True。这些参数的不同设置将直接影响到 LSTM 层的输出和学习能力。...,#如果为True,则批次中索引i的每个样本的最后状态将用作下一个批次中索引i的样本的初始状态。

    60230

    《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第15章 使用RNN和CNN处理序列

    更加准确点,技术上可以将BN层添加到记忆单元上(后面会看到),这样就可以应用在每个时间步上了(既对输入使用,也对前一步的隐藏态使用)。...它是由Jimmy Lei Ba等人在2016年的一篇论文中提出的:它跟批归一化很像,但不是在批次维度上做归一化,而是在特征维度上归一化。这么做的一个优势是可以独立对每个实例,实时计算所需的统计量。...公式 15-3 总结了如何计算单元的长时状态,短时状态,和单个实例的在每个时间步的输出(小批次的公式和这个公式很像)。 ?...公式 15-4 总结了如何计算单元对单个实例在每个时间步的状态。 ?...序列到矢量RNN又如何? 假如有一个每日单变量时间序列,想预测接下来的七天。要使用什么RNN架构? 训练RNN的困难是什么?如何应对? 画出LSTM单元的架构图? 为什么在RNN中使用1D卷积层?

    1.5K11

    从锅炉工到AI专家(10)

    最后使用我们熟悉的线性回归作用到每一个输出单元中去,在这里,这个线性回归也相当于神经网络中每个节点的激活函数。...但这个源码估计为了降低工作量,没有进行分词,程序假定每个字就是一个词,多字词的关系会被丢失,但这在后面“自动写诗”的环节会比较容易处理,否则可能造成每句诗中因为词语的存在而字数不同。...在这里使用了python函数可以跟变量一样赋值并调用的特性,读源码的时候可以注意一下。 与上一个例子还有一点不同,就是这里使用了两层的RNN网络,回忆一下多层神经网络,理解这个概念应当不难。...我们之前所有的案例,每个训练批次的数据必须是定长,上一个RNN案例中也使用了rnn.static_rnn,这表示使用定长的数据集。...引文及参考 TensorFlow练习3: RNN, Recurrent Neural Networks TensorFlow练习7: 基于RNN生成古诗词 如何用TensorFlow构建RNN?

    71550

    《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第16章 使用RNN和注意力机制进行自然语言处理

    如果你想将模型部署到移动设备或网页中,又不想每次都写一个不同的预处理函数,最好只使用TensorFlow运算,它可以融进模型中。看看怎么做。...对影评做批次,使用preprocess()将其转换为词的短序列,然后使用一个简单的encode_words()函数,利用创建的词表来编码这些词,最后预提取下一个批次: def encode_words(...所有这些层都是时间分布的,因此每个词是独立处理的。但是一次只看一个词,该如何翻译句子呢?这时就要用到新组件了: 编码器的多头注意力层,编码每个词与句子中其它词的关系,对更相关的词付出更多注意力。...这就是为什么多头注意力层使用了多个不同的值、键、查询的线性变换:这可以让模型将词表征投影到不同的亚空间,每个关注于词特性的一个子集。...Jeremy Howard 和 Sebastian Ruder 的ULMFiT 论文,介绍了无监督预训练对NLP的有效性:作者用海量语料,使用自监督学习(即,从数据自动生成标签)训练了一个LSTM语言模型

    1.8K21

    编码器-解码器网络:神经翻译模型详解

    相反,如果使用注意力模型,解码器不仅接受最终隐藏状态作为输入,还接受编码器处理输入序列的每一步的输出作为输入。编码器可以赋予编码器输出不同的权重,在计算解码器输出序列的每次迭代中使用。...模型需要学习如何分配这些权重,所以我们使用了一个全连接层。序列中的每个单词对应一个权重,所以权重数量等于最长句子长度。权重之和应等于一,所以全连接层将使用softmax激活函数。...计算出这些权重之后,就批次中的每个样本,对权重和编码器输出应用矩阵乘法,得到整个序列的编码向量的加权和。表示批次中每个样本的编码器输出的矩阵,可以看成编码器张量的一个水平切片。...GRU模型的注意力权重开始揭示模型使用了注意力机制,但LSTM模型看起来仍然没有学习利用注意力机制。这可能是因为LSTM可以访问保存了长期依赖的单元状态。...结语 GRU模型演示了注意力计算让模型重点关注编码序列的不同部分。然而,我们并不清楚为什么LSTM看起来要么没有利用注意力信息,要么基于一种不同的方式使用注意力信息。

    1.7K10

    LSTM 08:超详细LSTM调参指南

    如何诊断和调整LSTM 本文讨论了如何调整LSTM超参数。主要内容包括以下三部分: 如何对LSTM模型进行可靠的评估。 如何使用学习曲线诊断LSTM模型。...如何调整LSTM模型的问题框架,结构和学习行为。 8.1 可靠地评估LSTM模型 本小节,讨论了在不可见数据上对LSTM模型的进行可靠估计的过程。...一般而言,这种权重初始化效果很好,但是在LSTM中使用普通类型的权重初始化非常成功。评估不同权重初始化方案对模型性能的影响。...这是因为它结合了AdaGrad和RMSProp方法的最佳属性,自动为模型中的每个参数(权重)使用自定义学习率。此外,在Keras中实施Adam会对每个配置参数使用最佳初始值。...也可以尝试其他优化算法: Adam RMSprop Adagrad 8.5.2 学习率(Learning Rate) 学习速率控制在每个批次结束时根据估计的梯度更新权重的量。

    7K51

    Keras作为TensorFlow的简化界面:教程

    请注意,本教程假定您已经配置Keras使用TensorFlow后端(而不是Theano)。这里是如何做到这一点的说明。...TensorFlow variable scope对Keras层或模型没有影响。有关Keras权重共享的更多信息,请参阅功能性API指南中的“权重共享”部分。..., 64)) y = tf.placeholder(tf.float32, shape=(None, 20, 64)) # 用*相同的* LSTM权重对两个张量进行编码 x_encoded = lstm...(x) y_encoded = lstm(y) 收集可训练的权重和状态更新 一些Keras层(有状态的RNN和BatchNormalization层)具有需要作为每个训练步骤的一部分运行的内部更新。...如果你的图使用了Keras学习阶段(训练时期和测试时期不同的行为),那么在导出你的模型之前要做的第一件事就是对学习阶段的值进行硬编码(假设为0,也就是测试模式)到你的图。

    4.1K100

    如何使用LSTM网络进行权重正则化来进行时间序列预测

    作者 / Jason Brownlee 翻译 / 编辑部翻译组 来源 / http://machinelearningmastery.com 权重正则化是一种对LSTM节点内的权重施加约束(如L1或L2...这具有减少过拟合并提高模型性能的效果。 今天的推文,让各位读者发现如何使用LSTM网络的重量正则化和设计实验来测试其对时间序列预测的有效性。...LSTM模型 我们将使用基于状态的LSTM模型,其中1个神经元适合1000个时期。 需要批量大小为1,因为我们将使用walk-forward验证,并对最终12个月的测试数据进行一步预测。...该图显示所有配置具有相同的扩展,并且均匀地添加偏差正则化对该问题没有帮助。 06 输入权重正则化 我们也可以对每个LSTM单元的输入连接进行正则化处理。...每个权重正则化方案的动态行为可以通过绘制训练和测试RMSE在训练时期进行调查,以获得过度拟合或适配行为模式的权重正则化的想法。 结合正则化。 可以设计实验来探索组合不同权重正则化方案的效果。

    5K90

    教程 |「世界模型」实现,一步步让机器掌握赛车和躲避火球的技能

    这种前瞻性思维就是 RNN 要起到的作用——具体地说就是一个有着 256 个隐藏单元的 LSTM。h 表示隐藏状态的向量。.../),说明笔的下一点可以落在不同的红色区域的任意一点。...这三个输出神经元对应三个行为,且被缩放至适合的范围。 一段对白 为了理解这三个组件所扮演的不同角色以及它们是如何运作的,我们可以想象一段在它们中间发生的对白: ?...在训练神经网络的过程中,使用了带有 TensorFlow 后端的 Keras,但是在原文中,作者使用的是原始的 TensorFlow。 2....如果该文件夹中已经存在 weights.h5,并且没有 --new_model 标记,脚本将从这个文件中加载权重再训练已经存在的模型。这样你就可以按批次反复训练 VAE。 VAE 架构设置在 .

    47650

    RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测|附代码数据

    2017 年年中,R 推出了 Keras 包 _,_这是一个在 Tensorflow 之上运行的综合库,具有 CPU 和 GPU 功能 本文将演示如何在 R 中使用 LSTM 实现时间序列预测。...在常规的 RNN 中,小权重通过几个时间步一遍又一遍地相乘,并且梯度逐渐减小到零——这种情况称为梯度消失问题。 LSTM 网络通常由通过层连接的内存块(称为单元)组成。...此外,使用差分而不是原始值更容易建模,并且生成的模型具有更高的预测能力。 #将数据转换为平稳性 did = diff head 滞后数据集 LSTM 期望数据处于监督学习模式。...sps= laorm head(sps) 将数据集拆分为训练集和测试集 与大多数分析中训练和测试数据集是随机抽样的不同,对于时间序列数据,观察的顺序确实很重要。...LSTM 还需要在每个 epoch 之后重置网络状态。为了实现这一点,我们在 epoch 上运行一个循环,在每个 epoch 中我们拟合模型并通过参数 _reset_states()_重置状态。

    74700

    RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测

    本文约1700字,建议阅读5分钟本文将演示如何在 R 中使用 LSTM 实现时间序列预测。 全文链接:http://tecdat.cn/?...在常规的 RNN 中,小权重通过几个时间步一遍又一遍地相乘,并且梯度逐渐减小到零——这种情况称为梯度消失问题。 LSTM 网络通常由通过层连接的内存块(称为单元)组成。...此外,使用差分而不是原始值更容易建模,并且生成的模型具有更高的预测能力。 #将数据转换为平稳性did = diffhead 滞后数据集 LSTM 期望数据处于监督学习模式。...sps= laormhead(sps) 将数据集拆分为训练集和测试集 与大多数分析中训练和测试数据集是随机抽样的不同,对于时间序列数据,观察的顺序确实很重要。...LSTM 还需要在每个 epoch 之后重置网络状态。为了实现这一点,我们在 epoch 上运行一个循环,在每个 epoch 中我们拟合模型并通过参数 _reset_states()_重置状态。

    58511

    RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测

    本文将演示如何在 R 中使用 LSTM 实现时间序列预测。 ---- 简单的介绍 时间序列涉及按时间顺序收集的数据。我用 xt∈R 表示单变量数据,其中 t∈T 是观察数据时的时间索引。...在常规的 RNN 中,小权重通过几个时间步一遍又一遍地相乘,并且梯度逐渐减小到零——这种情况称为梯度消失问题。 LSTM 网络通常由通过层连接的内存块(称为单元)组成。...此外,使用差分而不是原始值更容易建模,并且生成的模型具有更高的预测能力。 #将数据转换为平稳性 did = diff head 滞后数据集 LSTM 期望数据处于监督学习模式。...sps= laorm head(sps) 将数据集拆分为训练集和测试集 与大多数分析中训练和测试数据集是随机抽样的不同,对于时间序列数据,观察的顺序确实很重要。...LSTM 还需要在每个 epoch 之后重置网络状态。为了实现这一点,我们在 epoch 上运行一个循环,在每个 epoch 中我们拟合模型并通过参数 _reset_states()_重置状态。

    1.2K30

    【TensorFlow 谷歌神经机器翻译】从零开始打造属于你的翻译系统

    本教程提供了对 seq2seq 模型的全面解释,并演示了如何从头开始构建一个具有竞争力的 seq2seq 模型。...这两个RNN原则上可以共享相同的权重; 但是,在实践中,我们经常使用两种不同的RNN参数(这些模型在拟合大型训练数据集时做得更好)。编码器RNN使用零向量作为起始状态,构建如下: ?...在后面的部分将介绍如何构建多层 LSTM,添加 dropout,以及使用 attention。...如图 5 所示,注意力计算在每个解码器时间步长都有发生,包括以下阶段: 比较当前目标隐藏状态与所有源状态,获得注意力权重“attention weight”(可以如图 4 所示); 基于注意力权重,计算上下文矢量...主要的问题是,在只有单机的情况下,如何在 3 个图中共享变量 Variables。这可以通过为每个图使用单独的 session 来解决。

    2.2K40

    Python中TensorFlow的长短期记忆神经网络(LSTM)、指数移动平均法预测股票市场和可视化|附代码数据

    本文探索Python中的长短期记忆(LSTM)网络,以及如何使用它们来进行股市预测 ( 点击文末“阅读原文”获取完整代码数据******** )。...在本文中,你将看到如何使用一个被称为长短时记忆的时间序列模型。LSTM模型很强大,特别是在保留长期记忆方面。在本文中,你将解决以下主题。 理解为什么你需要能够预测股票价格的变动。...# 可用的库 import numpy as np import tensorflow as tf 下载数据 股票价格有几种不同的变量。...计算预测的n_predict_once点与这些时间戳的真实股票价格之间的MSE损失 展开一组num_unrollings的批次 用未滚动的批次训练神经网络 计算平均训练损失 对于测试集的每个起点 .....然后两种平均技术,它们允许你对未来一步进行预测。接下来你看到,当你需要预测超过一步的未来时,这些方法是无用的。此后,讨论了如何使用LSTM来进行未来多步的预测。

    53001

    Python中TensorFlow的长短期记忆神经网络(LSTM)、指数移动平均法预测股票市场和可视化|附代码数据

    本文探索Python中的长短期记忆(LSTM)网络,以及如何使用它们来进行股市预测 在本文中,你将看到如何使用一个被称为长短时记忆的时间序列模型。LSTM模型很强大,特别是在保留长期记忆方面。...# 可用的库 import numpy as np import tensorflow as tf 下载数据 股票价格有几种不同的变量。...batch_size = 500 # 一个批次中的样本数 num_nodes = [200,200,150] # 我们所使用的深层LSTM堆栈中每一层的隐藏节点数量 n_layers = len(num_nodes...计算预测的n_predict_once点与这些时间戳的真实股票价格之间的MSE损失 展开一组num_unrollings的批次 用未滚动的批次训练神经网络 计算平均训练损失 对于测试集的每个起点 .....然后两种平均技术,它们允许你对未来一步进行预测。接下来你看到,当你需要预测超过一步的未来时,这些方法是无用的。此后,讨论了如何使用LSTM来进行未来多步的预测。

    1.1K10

    深度学习(一)基础:神经网络、训练过程与激活函数(110)

    权重和偏置的作用: 权重:连接神经元的输入和输出的系数,它们决定了输入信号对神经元输出的影响程度。在训练过程中,权重会被调整以最小化网络的预测误差。...这个过程包括以下几个步骤: 输入:输入数据被送入网络的输入层。 加权求和:每个神经元将其输入与相应的权重相乘,然后对这些乘积求和。...在反向传播过程中,这些导数用于计算每个参数的梯度,然后使用这些梯度来更新权重和偏置,以最小化损失函数。 选择合适的激活函数可以显著影响神经网络的训练效果和性能。...多模态数据分析:CNN可以处理不同模态的医疗数据,如结合结构性MRI和弥散张量成像数据,提高对脑肿瘤的分析和诊断能力。...TensorFlow和PyTorch在工业界和学术界的使用情况有何不同?

    42010

    使用TensorFlow训练循环神经网络语言模型

    ,思路借鉴了Keras的LSTM text generation。...并且使用语言模型来生成新的文本。 在本文中,我们更加关注的是,如何使用RNN来推测下一个词。 数据准备 TensorFlow的官方文档使用的是Mikolov准备好的PTB数据集。...batch_size: 神经网络使用随机梯度下降,数据按多个批次输出,此为每个批次的数据量 num_steps: 每个句子的长度,相当于之前描述的n的大小,这在循环神经网络中又称为时序的长度。...为了满足随机梯度下降的需要,我们还需要把数据整理成一个个小的批次,每次喂一个批次的数据给TensorFlow来更新权重,这样,数据就整理为[batch_len, batch_size, num_steps...,每个批次的训练集维度为[64, 20]。

    87330
    领券