在前面的章节,我们讨论了各种JavaScript概念和运行在浏览器上的各种深度学习框架。在本章中,我们将所有的知识付诸于实践,证明该技术的潜力。
本课程由CodingTheSmartWay.com出品,在本系列的第一部分中,你将学到:
选自Medium 作者:Mike Shi 机器之心编译 参与:Pedro、刘晓坤 Tensorflow.js 是一个能在你的浏览器里运行的全新深度学习库。本文将会介绍从原生 Tiny YOLO Darknet 模型到 Keras 的转换,再到 Tensorflow.js 的转换,如何利用其作一些预测,在编写 Tensorflow.js 遇到的一些问题,以及介绍使用联网摄像头/图像轻松地进行预测检测。 项目地址:https://github.com/ModelDepot/tfjs-yolo-tiny YOL
机器之心报道 参与:机器之心编辑部 当时时间 3 月 30 日,谷歌 TenosrFlow 开发者峰会 2018 在美国加州石景山开幕,来自全球的机器学习用户围绕 TensorFlow 展开技术演讲与演示。去年的 TensorFlow 开发者大会上,该框架正式升级到了 1.0 版本,逐渐成为最流行的深度学习框架。今年,TensorFlow 发布了面向 JavaScript 开发者的全新机器学习框架 TensorFlow.js。 在大会上午的 Keynote 中,谷歌大脑负责人 Jeff Dean、Tenso
本文首先介绍了TensorFlow.js的重要性及其组件,并介绍使用其在浏览器中构建机器学习模型的方法。然后,构建使用计算机的网络摄像头检测身体姿势的应用程序。
并非每个回归或分类问题都需要通过深度学习来解决。甚至可以说,并非每个回归或分类问题都需要通过机器学习来解决。毕竟,许多数据集可以用解析方法或简单的统计过程进行建模。
你最喜欢用什么工具来编写机器学习模型?数据科学家们对这个永恒的问题会给出各种不同的答案。一些人喜欢RStudio,另一些人更喜欢Jupyter Notebooks。我绝对属于后者。
【导读】如果你需要深度学习模型,那么 PyTorch 和 TensorFlow 都是不错的选择。
Tensorflow.js是一个基于deeplearn.js构建的库,可直接在浏览器上创建深度学习模块。使用它可以在浏览器上创建CNN(卷积神经网络)、RNN(循环神经网络)等等,且可以使用终端的GPU处理能力训练这些模型。因此,可以不需要服务器GPU来训练神经网络。本教程首先解释TensorFlow.js的基本构建块及其操作。然后,我们描述了如何创建一些复杂的模型。
在与谷歌创意实验室的合作,我很高兴地宣布的发行TensorFlow.js版本PoseNet 机器学习模型,它允许在浏览器中实时估计人类姿态。在这里试试现场演示(链接在文末)。
写这篇文章的目的是给现有web开发的同事提供一些新的开发方向,认识新的js开发领域!
选自TensorFlow Blog 机器之心编译 参与:王淑婷、路 TensorFlow 近日发布 TensorFlow.js 版本 PoseNet,该版本 PoseNet 只要电脑或手机配备了适当的网络摄像头,就可以直接在网页浏览器中进行体验。该模型源代码已开放,Javascript 开发者只需几行代码就可以修补和使用该技术。 通过与谷歌创意实验室合作,TensorFlow 近日发布了 TensorFlow.js 版的 PoseNet。这是一款机器学习模型,可以在浏览器中实时估计人体姿态。 模型 Demo
【导读】TensorFlow.js 的发布可以说是 JS 社区开发者的福音!但是在浏览器中训练一些模型还是会存在一些问题与不同,如何可以让训练效果更好?本文的作者,是一位前端工程师,经过自己不断的经验积累,为大家总结了 18 个 Tips,希望可以帮助大家训练出更好的模型。
TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程。
TensorFlow是Google推出的开源机器学习框架,并针对浏览器、移动端、IOT设备及大型生产环境均提供了相应的扩展解决方案,TensorFlow.js就是JavaScript语言版本的扩展,在它的支持下,前端开发者就可以直接在浏览器环境中来实现深度学习的功能,尝试过配置环境的读者都知道这意味着什么。浏览器环境在构建交互型应用方面有着天然优势,而端侧机器学习不仅可以分担部分云端的计算压力,也具有更好的隐私性,同时还可以借助Node.js在服务端继续使用JavaScript进行开发,这对于前端开发者而言非常友好。除了提供统一风格的术语和API,TensorFlow的不同扩展版本之间还可以通过迁移学习来实现模型的复用(许多知名的深度学习模型都可以找到python版本的源代码),或者在预训练模型的基础上来定制自己的深度神经网络,为了能够让开发者尽快熟悉相关知识,TensorFlow官方网站还提供了一系列有关JavaScript版本的教程、使用指南以及开箱即用的预训练模型,它们都可以帮助你更好地了解深度学习的相关知识。对深度学习感兴趣的读者推荐阅读美国量子物理学家Michael Nielsen编写的《神经网络与深度学习》(英文原版名为《Neural Networks and Deep Learning》),它对于深度学习基本过程和原理的讲解非常清晰。
TensorFlow.js 的发布可以说是 JS 社区开发者的福音!但是在浏览器中训练一些模型还是会存在一些问题与不同,如何可以让训练效果更好?本文为大家总结了 18 个 Tips,希望可以帮助大家训练出更好的模型。
Google 推出 TensorFlow.js 已有多年,JavaScript 也不知不觉成为了世界上最好的语言。相信对于大多数没接触过机器学习的前端工程师来说,都有一个共同的疑惑:TensorFlow.js 到底能做些什么?
特邀博文 / 软件工程师 Pierric Cistac;研究员 Victor Sanh;技术主管 Anthony Moi,来自 Hugging Face
AI(人工智能)为应用开发者开创了一个全新的可能性。通过利用机器学习或深度学习,您可以生成更好的用户配置文件、个性化设置和推荐,或者整合更智能的搜索、语音界面或智能助手,或者以其他数种方式改进您的应用。你甚至可以构建看得懂、听得懂,并与人类互动的应用。准备学习AI的你,知不知道选择哪种编程语言合适呢?以下列举的五种编程语言,被认为是最适合用来学习AI。大家可以参考一下。
TensorFlow 的 JS 版本终于出啦,deeplearn.js 正式收编至 TensorFlow 项目,并改名为 TensorFlow.js : 采用 WebGL 加速的基于浏览器的 JS 机器学习库。 摘要: 本文涉及 TensorFlow 基本概念的理解,迁移学习技术的实践应用,全文从技术聊到产品的玩法,设计师/产品经理只有懂得技术的新特性,才能为产品融入新的玩法。设计师也应该关注新技术带来的新的交互方式的变化,研究怎么样的交互方式才适合基于浏览器的深度学习应用。 阅读本文需要有 tensorf
TensorFlow 的 JS 版本终于出啦,deeplearn.js 正式收编至 TensorFlow 项目,并改名为 TensorFlow.js :
TensorFlow一直努力扩展自己的基础平台环境,除了熟悉的Python,当前的TensorFlow还实现了支持Javascript/C++/Java/Go/Swift(预发布版)共6种语言。 越来越多的普通程序员,可以容易的在自己工作的环境加入机器学习特征,让产品更智能。
欢迎回到这个关于神经网络编程的系列。在这篇文章中,我们将通过学习 element-wise 的操作来扩展我们的知识,而不仅仅是 reshape 操作。
今天凌晨,2018年TensorFlow开发者峰会(Dev Summit)在美国加州召开。
疫情期间,许多公司都开启了远程办公,试想一下,在视频会议时,如果你的同事突然从镜头中消失,大家会有什么样的反应?
【人工智能头条导读】TensorFlow 是一个开放源代码软件库,用于进行高性能数值计算。借助灵活的架构,用户可以轻松地将计算工作部署到多种平台(CPU、GPU、TPU)和设备(桌面设备、服务器集群、移动设备、边缘设备等)。最近在 JS 社区中,对 TF 中 Java API 相关项目与技术的高度需求是前所未有的。
对于不同人群可能有不同的答案,科研人员可能更偏爱PyTorch,因其简单易用,能够快速验证idea来抢占先机发论文。
我们将使用卷积神经网络(CNN)来识别不同类型的手绘图像。这个卷积神经网络将在 Quick Draw 数据集(https://github.com/googlecreativelab/quickdraw-dataset)上接受训练。该数据集包含 345 个类别的大约 5 千万张手绘图像。
谈到机器学习,我们脑海首先蹦出的编程语言是什么?一定是python。其实除了python,Javascript也是不错的选择。都说现在是大前端时代,从移动开发、服务器端,甚至桌面软件开发(比如大名鼎鼎的VS Code),都有Javascript的身影。
光学字符识别(OCR)是指能够从图像或文档中捕获文本元素,并将其转换为机器可读的文本格式的技术。如果您想了解更多关于这个主题的内容,本文是一个很好的介绍。
TensorFlow是一个机器学习框架。如果你有大量的数据或你在人工智能中追求的最先进的东西,那么这个框架可能是你最好的选择:深度学习。
数月前的某个夜晚,我躺在床上时,一个念头闪过我的脑海——「如果语音是计算接口的未来,那么那些听不见或看不见的人该怎么办?」我不知道究竟是什么触发了这个想法。我自己能听、能说,周围也没有聋哑人,而且我也没有语音助手。也许是因为无数语音助理方面的文章突然出现,也许是因为各大公司争相让你选择它们的语音助手产品,或许只是因为经常在朋友的桌上看到这些设备。由于这个问题无法从记忆中消失,我知道我需要仔细考虑它。
恩,这是一个很简单的表情识别——实际上就是入门级别的图片分类。使用方法就是在不同类别录入你女朋友的表情,然后在训练完毕后,会及时判断现在你女朋友的表情,再也不用猜她的想法了。
在前面的一篇文章《TensorFlow.js 微信小程序插件开始支持 WebAssembly》中,我们谈到了 Tensorflow.js(tfjs) 的新后端 WebAssembly(WASM)。这篇文章进一步挖掘 tfjs WASM 后端的更多信息,并探讨一下 tfjs 为何要引入 WASM 后端。
2015 年 11 月,谷歌宣布开源 TensorFlow 深度学习框架,这一框架基于谷歌 DistBelief 框架。
在这篇教程中,谷歌工程师Abe Haskins用简洁易懂的语言,教你用Unity3D和TensorFlow生产一只会投篮的AI。
在尝试改进Guess.js的预测模型时,我开始研究深度学习。我主要关注RNN,特别是LSTM,因为它们在Guess.js领域具有不合理的有效性(unreasonable effectiveness)。并且,我开始使用CNN,虽然传统上不那么常用,但也可用于时间序列。CNN通常用于图像分类,识别和检测。
微信日前官宣小程序支持AR功能。欧莱雅集团旗下阿玛尼美妆的官方微信小程序——“阿玛尼美妆官方精品商城”成为首个支持动态AR试妆的小程序,标志着全新的线上零售体验。
TensorFlow.JS,之前就发现这个好玩的东东,但是一直没有时间去看,作为一名深度学习者,没有折腾的心是不行的。我们都知道深度学习在工业和实际项目中有着很好的应用,但是如果用深度学习去做些有趣的应用也是很好玩的。
今天,Google官方推出了使用TensorFlow.js的人体图像分割工具BodyPix 2.0,对该工具进行了一次重大升级,加入多人支持,并提高了准确率。
这个TensorFlow.js项目名叫Pose Animator,Demo一上线,网友们已经玩嗨了。
如果您使用过 TensorFlow 1.x,则本部分将重点介绍迁移到 TensorFlow 2.0 所需的总体概念更改。 它还将教您使用 TensorFlow 可以进行的各种 AIY 项目。 最后,本节向您展示如何将 TensorFlow Lite 与跨多个平台的低功耗设备一起使用。
我可以很激动地说,我们终于有可能在浏览器中运行人脸识别程序了!在这篇文章中,我会给大家介绍一个基于 TensorFlow.js 核心的 JavaScript 模块,这个模块叫做 face-api.js。为了实现人脸检测、人脸识别以及人脸特征点检测的目的,该模块分别实现了三种类型的卷积神经网络。
【新智元导读】北京时间3月31日举行的2018 TensorFlow 开发者峰会上,TensorFlow宣布重大更新:增加支持JavaScript,并推出开源库TensorFlow.js,用户可以完全在浏览器定义、训练和运行机器学习模型。谷歌大脑负责人Jeff Dean、TensorFlow 总监 Rajat Monga等人进行了Keynote演讲。 Jeff Dean主旨演讲:用超强大的计算力,替代ML专家 北京时间3月31日举行的2018 TensorFlow 开发者峰会上,Google Brain负责
大家好 我一直探索更好玩地介绍机器学习,降低学习门槛,用其开发有趣,有价值的应用。之前介绍过很多机器学习应用方面的玩法,比如:gRPC部署训练好的机器学习模型,使用FastAPI构建机器学习API,用streamlit快速生成机器学习web应用 ,在Excel里玩机器学习。
在上一篇文章《浏览器中的手写数字识别》中,讲到在浏览器中训练出一个卷积神经网络模型,用来识别手写数字。值得注意的是,这个训练过程是在浏览器中完成的,使用的是客户端的资源。
本文将介绍如何从源码构建出 TensorFlow JS 库(tfjs)。对于大多数微信小程序开发者而言,并不需要经历这一步,要做的仅仅是把编译好的 tfjs 库加入微信小程序工程中。但我还是希望说说如何从源码编译出 tfjs 库,为什么呢?主要出于两个原因:
领取专属 10元无门槛券
手把手带您无忧上云