首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Sklearn、TensorFlow 与 Keras 机器学习实用指南第三版(九)

将数据转换为您可以轻松操作的格式(而不更改数据本身)。 确保敏感信息被删除或受到保护(例如,匿名化)。 检查数据的大小和类型(时间序列,样本,地理等)。...如果调用to_tensor()方法,不规则张量将转换为常规张量,用零填充较短的张量以获得相等长度的张量(您可以通过设置default_value参数更改默认值): >>> r.to_tensor() <...警告 默认的default_value是 0,所以在处理字符串集合时,必须设置这个参数(例如,设置为空字符串)。...最简单的队列是先进先出(FIFO)队列。要构建它,您需要指定它可以包含的记录的最大数量。此外,每个记录都是张量的元组,因此您必须指定每个张量的类型,以及可选的形状。...左侧的具体函数专门用于x=2,因此 TensorFlow 成功将其简化为始终输出 8(请注意,函数定义甚至没有输入)。右侧的具体函数专门用于 float32 标量张量,无法简化。

18200
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    tf.Variable

    dtype:如果设置了,initial_value将转换为给定的类型。如果没有,要么保留数据类型(如果initial_value是一个张量),要么由convert_to_张量决定。...给定一个复数张量x,这个操作返回一个类型为float32或float64的张量,这是x中每个元素的绝对值。x中所有的元素必须是复数形式?,绝对值为?。...参数:x:张量。必须是下列类型之一:int32、int64、bfloat16、half、float32、float64。y:张量。必须具有与x相同的类型。name:操作的名称(可选)。...27]]参数:x:类型为float16、float32、float64、int32、int64、complex64或complex128的张量。...更多关于广播参数:x:张量。必须是下列类型之一:int32、int64、bfloat16、half、float32、float64。y:张量。必须具有与x相同的类型。name:操作的名称(可选)。

    2.8K40

    tf.lite

    这用于将TensorFlow GraphDef或SavedModel转换为TFLite FlatBuffer或图形可视化。属性:inference_type:输出文件中实数数组的目标数据类型。...必须{特遣部队。float32 tf.uint8}。如果提供了优化,则忽略此参数。(默认tf.float32)inference_input_type:实数输入数组的目标数据类型。...允许不同类型的输入数组。如果提供了整数类型而没有使用优化,则必须提供quantized_inputs_stats。如果推论类型是tf。...float32,特遣部队。uint8, tf.int8}inference_output_type:实数输出数组的目标数据类型。允许不同类型的输出数组。如果推论类型是tf。...从具有量化意识的训练输出模型到完全量化模型的信号转换,然后推论_output_type默认为tf.uint8。在所有其他情况下,推论_output_type必须是tf。否则将抛出一个错误。

    5.3K60

    《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第12章 使用TensorFlow自定义模型并训练

    原因是函数tf.transpose(t)所做的和NumPy的属性T并不完全相同:在TensorFlow中,是使用转置数据的复制来生成张量的,而在NumPy中,t.T是数据的转置视图。...tf.sparse包含有对稀疏张量的运算。 张量数组(tf.TensorArray) 是张量的列表。有默认固定大小,但也可以做成动态的。列表中的张量必须形状相同,数据类型也相同。...字符串张量 类型是tf.string的常规张量,是字节串而不是Unicode字符串,因此如果你用Unicode字符串(比如,Python3字符串café)创建了一个字符串张量,就会自动被转换为UTF-...然后将超参数存为属性,使用keras.activations.get()函数(这个函数接收函数、标准字符串,比如“relu”、“selu”、或“None”),将activation参数转换为合适的激活函数...TF 函数规则 大多数时候,将Python函数转换为TF函数是琐碎的:要用@tf.function装饰,或让Keras来负责。

    5.3K30

    深度学习-TensorFlow张量和常用函数

    北京大学深度学习1:TensorFlow张量和常用函数 本文记录的是TensorFlow2.0中的张量基础知识和常用函数 张量类型 维数 阶 名字 例子 0-D 0 标量scalar s = 1,2,3...1, 0], [0, 0, 1], [0, 0, 0]])> c.dtype tf.int64 print(c.shape) (4, 3) 方式2:将numpy的数据类型转换为...:强制数据类型转换 tf.reduct_mean/sum:求和或均值 tf.reduce_max/min:求最值 tf.Variable:标记变量 四则运算 tf.data.Dataset.from_tensor_slices...,down 1:表示纬度,跨列,across 如果不指定的话,则全员参与计算 tf.cast 强制tensor转换为该数据类型 tf.cast(张量名, dtype=数据类型) In [2]: x1 =...]], dtype=float32)> 上面变量w的解释: 先生成正态分布的随机数 再将随机数标记为可训练,这样在神经网络的反向传播中就可以通过梯度下降更新参数w了 数学运算 四则运算:tf.add(t1

    45420

    【tensorflow2.0】张量的数学运算

    标量运算符的特点是对张量实施逐元素运算。 有些标量运算符对常用的数学运算符进行了重载。并且支持类似numpy的广播特性。 许多标量运算符都在 tf.math模块下。...# 利用tf.math.top_k可以在TensorFlow中实现KNN算法 [8 7 5] [5 2 3] 三,矩阵运算 矩阵必须是二维的。...[2., 4.]], dtype=float32)> # 矩阵逆,必须为tf.float32或tf.double类型 a = tf.constant([[1.0,2],[3.0,4]],dtype =...,将维度较小的张量进行扩展,直到两个张量的维度都一样。...2、如果两个张量在某个维度上的长度是相同的,或者其中一个张量在该维度上的长度为1,那么我们就说这两个张量在该维度上是相容的。 3、如果两个张量在所有维度上都是相容的,它们就能使用广播。

    2.1K30

    TensorFlow2.X学习笔记(3)--TensorFlow低阶API之张量

    一、张量的结构操作 张量的操作主要包括张量的结构操作和张量的数学运算。 张量结构操作诸如:张量创建,索引切片,维度变换,合并分割。 张量数学运算主要有:标量运算,向量运算,矩阵运算。...= tf.where(c<0) #将张量的第[0,0]和[2,1]两个位置元素替换为0得到新的张量 d = c - tf.scatter_nd([[0,0],[2,1]],[c[0,0],c[2,1]...)> tf.split是tf.concat的逆运算,可以指定分割份数平均分割,也可以通过指定每份的记录数量进行分割。...= array([[1., 3.], [2., 4.]], dtype=float32)> #矩阵逆,必须为tf.float32或tf.double类型 a = tf.constant(...(a,b.shape) #计算广播后计算结果的形状,静态形状,TensorShape类型参数 tf.broadcast_static_shape(a.shape,b.shape) #计算广播后计算结果的形状

    1.5K30

    tf.compat

    .): 断言给定条件是正确的。NoGradient(...): 指定op_type类型的操作数是不可微的。NotDifferentiable(...): 指定op_type类型的操作数是不可微的。....): 将给定的type_value转换为DType。as_string(...): 将给定张量中的每个项转换为字符串。支持许多数字asin(...): 计算x元素的三角反正弦。....): 将张量强制转换为float64类型。(弃用)to_float(...): 将张量强制转换为float32类型。(弃用)to_int32(...): 将张量转换为int32类型。....): 将字节数组、字节或unicode python输入类型转换为字节。as_str(...): 将任何类似字符串的python输入类型转换为unicode。....): 将输入转换为str类型。as_text(...): 将任何类似字符串的python输入类型转换为unicode。

    5.3K30

    pytorch和tensorflow的爱恨情仇之基本数据类型

    ,int32 或 int64) intc 与 C 的 int 类型一样,一般是 int32 或 int 64 intp 用于索引的整数类型(类似于 C 的 ssize_t,一般情况下仍然是 int32...我们还可以使用type()来进行转换: ? 我们同样可以使用type_as()将某个张量的数据类型转换为另一个张量的相同的数据类型: ?...(2)张量和numpy之间的转换 将numpy数组转换为张量:使用from_numpy() ? 将张量转换为numoy数组:使用.numpy() ?...3、tensorflow基本数据类型 ? 定义一个张量: ? 使用tf.constant建立一个常量,注意:常量是不进行梯度更新的。...(2) 张量和numpy之间的类型转换 numpy转张量:使用tf.convert_to_tensor() ? 张量转numpy:由Session.run或eval返回的任何张量都是NumPy数组。

    2.9K32

    tensorflow之tf.tiletf.slice等函数的基本用法解读

    假如input是一个3维的张量。那么mutiples就必须是一个1x3的1维张量。这个张量的三个值依次表示input的第1,第2,第3维数据扩展几倍。...tf.multiply(x, y, name=None) 参数: x: 一个类型为:half, float32, float64, uint8, int8, uint16, int16, int32...(2)两个相乘的数必须有相同的数据类型,不然就会报错。 tf.matmul() 将矩阵a乘以矩阵b,生成a * b。...name: 操作的名字(可选参数) 返回值: 一个跟张量a和张量b类型一样的张量且最内部矩阵是a和b中的相应矩阵的乘积。...注意: (1)输入必须是矩阵(或者是张量秩 >2的张量,表示成批的矩阵),并且其在转置之后有相匹配的矩阵尺寸。

    2.7K30

    TensorFlow 2.0 快速入门指南:第一部分

    标量(简单数字)是等级 0 的张量,向量是等级 1 的张量,矩阵是等级 2 的张量,三维数组是等级 3 的张量。张量具有数据类型和形状(张量中的所有数据项必须具有相同的类型)。...要查找张量的数据类型,请使用以下dtype属性: t3.dtype 输出将如下所示: tf.float32 指定按元素的基本张量操作 如您所料,使用重载运算符+,-,*和/来指定逐元素基本张量操作,如下所示...可用于构成计算图一部分的张量的所有操作也可用于急切执行变量。 在这个页面上有这些操作的完整列表。 将张量转换为另一个(张量)数据类型 一种类型的 TensorFlow 变量可以强制转换为另一种类型。...floatx:这是一个字符串,指定默认的浮点精度,为"float16","float32"或"float64"之一。...but specify anyway 接下来,将所有数据点(x)归一化为float32类型的浮点数范围为 0 到 1。

    4.4K10

    TensorFlow入门:一篇机器学习教程

    图的每个节点表示数学运算的实例(如加法,除法或乘法),每个边是执行操作的多维数据集(张量)。 ?...,其中value是将在进一步计算中使用的实际常数值,dtype是数据类型参数(例如, float32/64, int8/16等),shape是可选的尺寸,name是张量的可选名称,最后一个参数是一个布尔值...张量结构可以用三个参数来标识:等级,形状和类型。 等级:标识张量的维数。秩被称为张量的阶数或n维,其中例如秩1张量是矢量或秩2张量是矩阵。 形状:张量的形状是它所具有的行数和列数。...这可以通过使用NumPy库或通过将Python n维数组转换为TensorFlow张量来轻松完成。 ?...接下来,我们将解释一些矩阵操作。像线性回归一样,它们在机器学习模型中往往很重要。让我们写一些代码,将做到基本的矩阵运算像乘法,获得转置,得到了决定,乘法,溶胶,等等。 以下是调用这些操作的基本示例。

    4.1K10

    Tensorflow从入门到精通(二):附代码实战

    =(1, 1), dtype=float32) 程序1-1的输出结果表明:构建图的运算过程输出的结果是一个Tensor,且其主要由三个属性构成:Name、Shape和Type。...最后一个属性表示的是张量的类型,每个张量都会有唯一的类型,常见的张量类型如图1-1所示。 ? 图1-1 常用的张量类型 我们需要注意的是要保证参与运算的张量类型相一致,否则会出现类型不匹配的错误。...如程序1-2所示,当参与运算的张量类型不同时,Tensorflow会报类型不匹配的错误: 程序1-2: import tensorflow as tf m1 = tf.constant([5,1]) m2...does not match type int32 of argument 'x'....正如程序的报错所示:m1是int32的数据类型,而m2是float32的数据类型,两者的数据类型不匹配,所以发生了错误。所以我们在实际编程时,一定注意参与运算的张量数据类型要相同。

    1.1K70
    领券