首页
学习
活动
专区
圈层
工具
发布
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    关于Spark Streaming感知kafka动态分区的问题

    本文主要是讲解Spark Streaming与kafka结合的新增分区检测的问题。...读本文前关于kafka与Spark Streaming结合问题请参考下面两篇文章: 1,必读:再讲Spark与kafka 0.8.2.1+整合 2,必读:Spark与kafka010整合 读本文前是需要了解...kafka 0.8版本 进入正题,之所以会有今天题目的疑惑,是由于在08版本kafka和Spark Streaming结合的DirectStream这种形式的API里面,是不支持kafka新增分区或者topic...而这个问题,对于很多业务增长比较明显的公司都是会有碰到相应的问题。 比如,原来的公司业务增长比较明显,那么kafka吞吐量,刚开始创建的topic数目和分区数目可能满足不了并发需求,需要增加分区。...新增加的分区会有生产者往里面写数据,而Spark Streaming跟kafka 0.8版本结合的API是满足不了动态发现kafka新增topic或者分区的需求的。 这么说有什么依据吗?

    94240

    深入解析Spark Structured Streaming:无限DataFrame的核心机制与应用

    与早期的Spark Streaming基于RDD的微批处理架构不同,Structured Streaming通过深度集成Spark SQL引擎,实现了真正的端到端流处理解决方案。...假设从文件流读取JSON数据: from pyspark.sql import SparkSession spark = SparkSession.builder.appName("UnboundedDataFrameDemo...以下是一个代码示例,展示如何将Kafka中的JSON格式日志数据过滤后追加到Parquet文件中: from pyspark.sql import SparkSession from pyspark.sql.functions...import col, from_json spark = SparkSession.builder.appName("AppendExample").getOrCreate() schema =...性能优化与常见问题解答 性能调优技巧 并行度设置 在 Structured Streaming 中,合理设置并行度是提升处理性能的关键。

    18310

    Structured Streaming教程(3) —— 与Kafka的集成

    Structured Streaming最主要的生产环境应用场景就是配合kafka做实时处理,不过在Strucured Streaming中kafka的版本要求相对搞一些,只支持0.10及以上的版本。...就在前一个月,我们才从0.9升级到0.10,终于可以尝试structured streaming的很多用法,很开心~ 引入 如果是maven工程,直接添加对应的kafka的jar包即可: structured streaming默认提供了几种方式: 设置每个分区的起始和结束值 val df = spark .read .format("kafka") .option...比较常见的做法是,在后续处理kafka数据时,再进行额外的去重,关于这点,其实structured streaming有专门的解决方案。 保存数据时的schema: key,可选。...为了避免每次手动设置startingoffsets的值,structured streaming在内部消费时会自动管理offset。

    1.7K00

    SparkFlinkCarbonData技术实践最佳案例解析

    Spark Structured Streaming 特性介绍 作为 Spark Structured Streaming 最核心的开发人员、Databricks 工程师,Tathagata Das(以下简称...因为可以运行在 Spark SQL 引擎上,Spark Structured Streaming 天然拥有较好的性能、良好的扩展性及容错性等 Spark 优势。...把 Kafka 的 JSON 结构的记录转换成 String,生成嵌套列,利用了很多优化过的处理函数来完成这个动作,例如 from_json(),也允许各种自定义函数协助处理,例如 Lambdas, flatMap...Structured Streaming 隔离处理逻辑采用的是可配置化的方式(比如定制 JSON 的输入数据格式),执行方式是批处理还是流查询很容易识别。...其中,华为云 CloudStream 同时支持 Flink 和 Spark(Streaming 和 Structured Streaming)。

    1.8K20

    大数据开发:Spark Structured Streaming特性

    Spark Structured Streaming对流的定义是一种无限表(unbounded table),把数据流中的新数据追加在这张无限表中,而它的查询过程可以拆解为几个步骤,例如可以从Kafka...Spark Structured Streaming容错机制 在容错机制上,Structured Streaming采取检查点机制,把进度offset写入stable的存储中,用JSON的方式保存支持向下兼容...Spark Structured Streaming性能 在性能上,Structured Streaming重用了Spark SQL优化器和Tungsten引擎。...Structured Streaming隔离处理逻辑采用的是可配置化的方式(比如定制JSON的输入数据格式),执行方式是批处理还是流查询很容易识别。...因为历史状态记录可能无限增长,这会带来一些性能问题,为了限制状态记录的大小,Spark使用水印(watermarking)来删除不再更新的旧的聚合数据。

    1.1K10

    基于Apache Hudi的多库多表实时入湖最佳实践

    CDC数据写入到MSK后,推荐使用Spark Structured Streaming DataFrame API或者Flink StatementSet 封装多库表的写入逻辑,但如果需要源端Schema...变更自动同步到Hudi表,使用Spark Structured Streaming DataFrame API实现更为简单,使用Flink则需要基于HoodieFlinkStreamer做额外的开发。...下图列出了CDC工具的对比项,供大家参考 2.3 Spark Structured Streaming多库表并行写Hudi及Schema变更 图中标号4,CDC数据到了MSK之后,可以通过Spark/...首先对于Spark引擎,我们一定是使用Spark Structured Streaming 消费MSK写入Hudi,由于可以使用DataFrame API写Hudi, 因此在Spark中可以方便的实现消费...API操作数据,通过from_json动态生成DataFrame,因此可以较为方便的实现自动添加列。

    3.2K10

    spark君第一篇图文讲解Delta源码和实践的文章

    spark 一直在往批流统一的方向上演进,有了 structured streaming 之后,就实现了引擎内核的批流统一,API 也高度统一,比如一个流式任务和离线任务的代码可能只有 read/write...p=3713 Structured Streaming 读写 Delta http://spark.coolplayer.net/?...我们在 spark-shell 中启动一个 structured streaming job, 启动命令,使用 --jars 带上需要的包: ?...每次提交变动就会产生一个新版本,所以如果我们使用 structured streaming 从 kafka 读取数据流式写入delta, 每一次微批处理就会产生一个数据新版本, 下面这个图例中展示了0这个批次提交的操作类型为...比如我们在 structured streaming 里面流式输出的时候: ?

    1.4K10
    领券