首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Spark将Dataframe数据写入Hive分区表的方案

欢迎您关注《大数据成神之路》 DataFrame 将数据写入hive中时,默认的是hive默认数据库,insert into没有指定数据库的参数,数据写入hive表或者hive表分区中: 1、将DataFrame...数据写入到hive表中 从DataFrame类中可以看到与hive表有关的写入API有一下几个: registerTempTable(tableName:String):Unit, inserInto(...,就可以将DataFrame数据写入hive数据表中了。...2、将DataFrame数据写入hive指定数据表的分区中 hive数据表建立可以在hive上建立,或者使用hiveContext.sql("create table....")...,使用saveAsTable时数据存储格式有限,默认格式为parquet,将数据写入分区的思路是:首先将DataFrame数据写入临时表,之后由hiveContext.sql语句将数据写入hive分区表中

16.4K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Apache Spark 2.2.0 中文文档 - Spark SQL, DataFrames and Datasets Guide | ApacheCN

    Run SQL on files directly (直接在文件上运行 SQL) 不使用读取 API 将文件加载到 DataFrame 并进行查询, 也可以直接用 SQL 查询该文件....表时, Spark SQL 将尝试使用自己的 Parquet support (Parquet 支持), 而不是 Hive SerDe 来获得更好的性能....他们描述如何从多个 worker 并行读取数据时将表给分区。partitionColumn 必须是有问题的表中的数字列。...spark.sql.files.openCostInBytes 4194304 (4 MB) 按照字节数来衡量的打开文件的估计费用可以在同一时间进行扫描。 将多个文件放入分区时使用。...在 DDL 没有指定精度时,则默认保留 Decimal(10, 0)。 时间戳现在存储在 1 微秒的精度,而不是 1 纳秒的。

    26.1K80

    基于Apache Hudi + MinIO 构建流式数据湖

    时间线上的新事件被保存到内部元数据表中,并作为一系列读取时合并的表实现,从而提供低写入放大。因此,Hudi 可以快速吸收元数据的快速变化。...,向MinIO写表 下面将生成新的行程数据,将它们加载到 DataFrame 中,并将我们刚刚创建的 DataFrame 作为 Hudi 表写入 MinIO。...查询数据 让我们将 Hudi 数据加载到 DataFrame 中并运行示例查询。...每次写入 Hudi 表都会创建新的快照。将快照视为可用于时间旅行查询的表版本。尝试一些时间旅行查询(您必须更改时间戳以与您相关)。...为了展示 Hudi 更新数据的能力,我们将对现有行程记录生成更新,将它们加载到 DataFrame 中,然后将 DataFrame 写入已经保存在 MinIO 中的 Hudi 表中。

    2.1K10

    数据湖(四):Hudi与Spark整合

    更新数据时,如果原来数据有分区,一定要指定分区,不然就相当于是向相同表目录下插入数据,会生成对应的“default”分区。...当更新完成之后,再一次从Hudi中查询数据时,会看到Hudi提交的时间字段为最新的时间。...Hudi可以根据我们传入的时间戳查询此时间戳之后的数据,这就是增量查询,需要注意的是增量查询必须通过以下方式在Spark中指定一个时间戳才能正常查询:option(DataSourceReadOptions.BEGIN_INSTANTTIME_OPT_KEY...,"insert_overwrite_table")选项,该选项“insert_overwrite_table”可以直接在元数据层面上操作,直接将数据写入表,原有数据会在一定时间内删除,相比删除原有数据再插入更方便...,查询指定时间戳之后的新增数据: //4.2 incremental 模式查询,查询指定时间戳后的数据session.read.format("hudi") .option(DataSourceReadOptions.QUERY_TYPE_OPT_KEY

    3.2K84

    使用 Spark | 手把手带你十步轻松拿下 Spark SQL 使用操作

    Spark SQL 具体使用和操作 Hive 数据源的方法将在后续的 Hive 专栏中进行介绍。...需要注意的是,使用 SQL 语句访问该表时,要加上 global_temp 作为前缀来引用,因为全局临时视图是绑定到系统保留的数据库 global_temp 上的。...4.4 读取数据源,加载数据(RDD 转 DataFrame) 读取上传到 HDFS 中的广州二手房信息数据文件,分隔符为逗号,将数据加载到上面定义的 Schema 中,并转换为 DataFrame 数据集...展示加载的数据集结果 由于数据加载到 Schema 中为 RDD 数据集,需要用 toDF 转换为 DataFrame 数据集,以使用 Spark SQL 进行查询。...4.10 使用 SQL 风格进行连接查询 读取上传到 HDFS 中的户型信息数据文件,分隔符为逗号,将数据加载到定义的 Schema 中,并转换为 DataSet 数据集: case class Huxing

    8.8K51

    Spark SQL

    Shark即Hive on Spark,为了实现与Hive兼容,Shark在HiveQL方面重用了Hive中HiveQL的解析、逻辑执行计划翻译、执行计划优化等逻辑,可以近似认为仅将物理执行计划从MapReduce...Spark SQL作为Spark生态的一员继续发展,而不再受限于Hive,只是兼容Hive Hive on Spark是一个Hive的发展计划,该计划将Spark作为Hive的底层引擎之一,也就是说,Hive...SparkSession支持从不同的数据源加载数据,并把数据转换成DataFrame,并且支持把DataFrame转换成SQLContext自身中的表,然后使用SQL语句来操作数据。...在创建DataFrame时,可以使用spark.read操作,从不同类型的文件中加载数据创建DataFrame。...Andy, 30 Justin, 19 现在要把people.txt加载到内存中生成一个DataFrame,并查询其中的数据。

    8310

    Spark SQL实战(04)-API编程之DataFrame

    因此,如果需要访问Hive中的数据,需要使用HiveContext。 元数据管理:SQLContext不支持元数据管理,因此无法在内存中创建表和视图,只能直接读取数据源中的数据。...如若访问Hive中数据或在内存中创建表和视图,推荐HiveContext;若只需访问常见数据源,使用SQLContext。...DataFrame可从各种数据源构建,如: 结构化数据文件 Hive表 外部数据库 现有RDD DataFrame API 在 Scala、Java、Python 和 R 都可用。...Spark SQL用来将一个 DataFrame 注册成一个临时表(Temporary Table)的方法。之后可使用 Spark SQL 语法及已注册的表名对 DataFrame 进行查询和操作。...n行数据的数组 该 API 可能导致数据集的全部数据被加载到内存,因此在处理大型数据集时应该谨慎使用。

    4.2K20

    基于Apache Hudi + MinIO 构建流式数据湖

    时间线上的新事件被保存到内部元数据表中,并作为一系列读取时合并的表实现,从而提供低写入放大。因此,Hudi 可以快速吸收元数据的快速变化。...,向MinIO写表 下面将生成新的行程数据,将它们加载到 DataFrame 中,并将我们刚刚创建的 DataFrame 作为 Hudi 表写入 MinIO。...查询数据 让我们将 Hudi 数据加载到 DataFrame 中并运行示例查询。...每次写入 Hudi 表都会创建新的快照。将快照视为可用于时间旅行查询的表版本。尝试一些时间旅行查询(您必须更改时间戳以与您相关)。...为了展示 Hudi 更新数据的能力,我们将对现有行程记录生成更新,将它们加载到 DataFrame 中,然后将 DataFrame 写入已经保存在 MinIO 中的 Hudi 表中。

    1.6K20

    总要到最后关头才肯重构代码,强如spark也不例外

    DataFrame翻译过来的意思是数据帧,但其实它指的是一种特殊的数据结构,使得数据以类似关系型数据库当中的表一样存储。...将hadoop集群中的数据以表结构的形式存储,让程序员可以以类SQL语句来查询数据。看起来和数据库有些近似,但原理不太一样。...需要注意的是,如果数据量很大,这个执行会需要一点时间,但是它仍然是一个转化操作。数据其实并没有真正被我们读入,我们读入的只是它的schema而已,只有当我们执行执行操作的时候,数据才会真正读入处理。...另外一种操作方式稍稍复杂一些,则是将DataFrame注册成pyspark中的一张视图。这里的视图和数据库中的视图基本上是一个概念,spark当中支持两种不同的视图。...再加上性能原因,我们在处理数据时必然首选使用DataFrame。

    1.2K10

    hudi中的写操作

    在本节中,我们将介绍如何使用DeltaStreamer工具从外部数据源甚至其他Hudi表中获取新的更改,以及如何使用Hudi数据源通过upserts加速大型Spark作业。...Datasource Writer Hudi – Spark模块提供了DataSource API来写入(和读取)一个Spark DataFrame到一个Hudi表中。...注意:在初始创建表之后,当使用Spark SaveMode写入(更新)表时,这个值必须保持一致。追加模式。...Hudi目前支持不同的组合的记录键和分区路径如下- 简单的记录键(只包含一个字段)和简单的分区路径(可选的hive风格分区) 简单的记录键和基于自定义时间戳的分区路径(带有可选的hive风格分区...) 复合记录键(多个字段的组合)和复合分区路径 复合记录键和基于时间戳的分区路径(也支持复合) 非分区表 CustomKeyGenerator.java java (hudi-spark

    1.7K10

    在AWS Glue中使用Apache Hudi

    _2.11:2.4.3 \ --conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer' 可知,将Hudi加载到Spark运行环境中需要完成两个关键动作...Dataframe,取名dataframe1,然后将其以Hudi格式保存到S3上,但并不会同步元数据(也就是不会自动建表);•第二步,以Hudi格式读取刚刚保存的数据集,得到本例的第二个Dataframe...的表将会被自动创建出来;•第四步,为了验证元数据是否同步成功,以及更新和插入的数据是否正确地处理,这次改用SQL查询user表,得到第四个Dataframe:dataframe4,其不但应该包含数据,且更新和插入数据都必须是正确的...将Hudi元数据同步到Glue Catalog 上述读写操作并没有同步元数据,在实际应用中,大多数情况下,开发者会开启Hudi的Hive Sync功能,让Hudi将其元数据映射到Hive Metastore..." 这些配置项主要在告诉Hudi数据集的分区信息,以便Hudi能正确地将分区相关的元数据也同步到Hive Metastore中。

    1.6K40

    SparkSql官方文档中文翻译(java版本)

    存储一个DataFrame,可以使用SQLContext的table方法。table先创建一个表,方法参数为要创建的表的表名,然后将DataFrame持久化到这个表中。...默认的saveAsTable方法将创建一个“managed table”,表示数据的位置可以通过metastore获得。当存储数据的表被删除时,managed table也将自动删除。...当Hive metastore Parquet表转换为enabled时,表修改后缓存的元数据并不能刷新。所以,当表被Hive或其它工具修改时,则必须手动刷新元数据,以保证元数据的一致性。...使用JdbcRDD时,Spark SQL操作返回的DataFrame会很方便,也会很方便的添加其他数据源数据。...,可用DataFrame或Spark SQL临时表的方式调用数据源API。

    9.1K30

    tsv文件在大数据技术栈里的应用场景

    以下是一些TSV文件在大数据技术栈中的应用场景: 数据导入:在大数据平台中,TSV文件常用于数据的导入操作,例如可以将TSV文件导入Hadoop的HDFS系统或者数据库系统如Hive中进行存储和处理。...Spark数据处理:Apache Spark可以读写TSV文件,并在Spark SQL中对其进行转换处理,例如使用DataFrame API。...Hive分析你的TSV数据,需要在Hive中创建一个表,表结构应与TSV文件的结构匹配。...如果需要,也可以使用LOAD DATA语句将数据从一个HDFS位置加载到表中。...在MapReduce中,你需要编写相应的Mapper和Reducer来解析TSV格式,并在Spark中,可以使用Spark SQL的DataFrame或Dataset API进行数据加载和转换。

    15200

    Hortonworks正式发布HDP3.0

    因此,我们默认启用ACID并启用对数据更新的完全支持。 3.Spark的Hive仓库连接器 Hive WarehouseConnector允许你将Spark应用程序与Hive数据仓库连接。...6.JDBC存储连接器 你现在可以将任何支持JDBC的数据库映射到Hive的catalog。这意味着你现在可以使用Hive对其他数据库和Hive中的表进行join操作。...这与Kafka-Hive ingest不同,Kafka-Hive ingest使用SQL合并定期将数据加载到Hive表中,数据延迟一般为5-10分钟。...当我们在内存中保留更长时间的数据时,净性能会提高。 6.更好的依赖管理 HBase现在内部隐藏了通常不兼容的依赖,以防止出现问题。 你也可以使用隐藏的客户端jars,这将减轻现有应用程序的负担。...中捕获Spark SQL,Dataframe和模型元数据以及数据溯源。

    3.5K30

    如何在 CDP 的湖仓一体中使用Iceberg

    丰富的 SQL(查询、DDL、DML)命令集:使用为 CDW 和 CDE 开发的 SQL 命令创建或操作数据库对象、运行查询、加载和修改数据、执行时间旅行操作以及将 Hive 外部表转换为 Iceberg...) Cloudera 机器学习 使用 CDE 将数据加载到 Iceberg 表中 我们首先在 CDE 中创建 Spark 3虚拟集群(VC)。...但是如果分区方案需要更改,您通常必须从头开始重新创建表。在 Iceberg 中,这些表管理操作可以以最少的返工来应用,从而减轻数据从业人员在改进表以更好地满足业务需求时的负担。...将 CDW 与 Iceberg 一起使用 时间旅行 现在我们已经将数据加载到 Iceberg 表中,让我们使用 Impala 来查询表。...我们可以将表的分区方案从按年分区更改为按年和月列分区。将新数据加载到表中后,所有后续查询都将受益于月列和年列的分区修剪。

    1.4K10

    Note_Spark_Day08:Spark SQL(Dataset是什么、外部数据源、UDF定义和分布式SQL引擎)

    ,实现HBase,直接使用,简易版本 集成Hive,从Hive表读取数据分析,也可以将数据保存到Hive表,企业中使用最多 使用Hive框架进行数据管理,使用SparkSQL分析处理数据 3、自定义...模块内部支持保存数据源如下: 当将结果数据DataFrame/Dataset保存至Hive表中时,可以设置分区partition和分桶bucket,形式如下: 可以发现,SparkSQL模块中内置数据源中...07-[掌握]-外部数据源之保存模式SaveMode 当将DataFrame或Dataset数据保存时,默认情况下,如果存在,会抛出异常。...; 由于保存DataFrame时,需要合理设置保存模式,使得将数据保存数据库时,存在一定问题的。...Hive(IDEA开发) ​ 在IDEA中开发应用,集成Hive,读取表的数据进行分析,构建SparkSession时需要设置HiveMetaStore服务器地址及集成Hive选项,首先添加MAVEN

    4K40

    SparkSQL

    一、概述 1、简介 Hive on Spark:Hive既作为存储元数据又负责SQL的解析优化,语法是HQL语法,执行引擎变成了Spark,Spark负责采用RDD执行。...Spark on Hive:Hive只作为存储元数据,Spark负责SQL解析优化,语法是Spark SQL语法,Spark底层采用优化后的df或者ds执行。...DataFrame与RDD的主要区别在于,DataFrame带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。 Spark SQL性能上比RDD要高。...三者都有惰性机制,在进行创建、转换,如map方法时,不会立即执行,只有在遇到Action行动算子如foreach时,三者才会开始遍历运算。 三者有许多共同的函数,如filter,排序等。...// 列名要用双引号引起来,如果是单引号的话,只能在前面加一个单引号。

    35050
    领券