Spark 执行的特点 中间结果输出:Spark 将执行工作流抽象为通用的有向无环图执行计划(DAG),可以将多 Stage 的任务串联或者并行执行。...\ --conf spark.hadoop.hive.exec.dynamic.partition=True \ --conf spark.hadoop.hive.exec.dynamic.partition.mode...-conf spark.sql.autoBroadcastJoinThreshold=314572800\ --conf spark.hadoop.hive.exec.dynamic.partition...=true \ --conf spark.hadoop.hive.exec.dynamic.partition.mode=nonstrict \ --hiveconf v_yesterday...import pandas as pd conf = SparkConf() \ .setAppName("your_appname") \ .set("hive.exec.dynamic.partition.mode
2、查看表的详细表结构信息 DESCRIBE EXTENDED mydb.employees; //在表名后添加字段的名称,使用extended关键字也不会增加更多的输出信息。...INSERT OVERWRITE TABLE employees PARTITION (country='US',state) SELECT ...... false 设置成true,表示开启动态分区功能 hive.exec.dynamic.partition.mode strict 设置成strict,表示允许所有分区都是动态的 hive.exec.max.dynamic.parition.pernode...eg: set hive.exec.dynamic.partition=true; set hive.exec.dynamic.partition.mode=nonstrct; set.hive.exec.max.dynamic.partitions.pernode...=1000; INSERT OVERWRITE TABLE employees PARTITION (country,state) SELECT ...
也可以在select语句里面通过使用分区值来动态指明分区: hive> set hive.exec.dynamic.partition.mode=nonstrict; hive> insert...insert overwrite方式来插入数据 hive> insert overwrite table test > PARTITION (age) > select id,...test3; 9.表重命名 hive> ALTER TABLE events RENAME TO 3koobecaf; 10.表增加列 hive> ALTER TABLE pokes ADD COLUMNS...(new_col INT); 11.添加一列并增加列字段注释 hive> ALTER TABLE invites ADD COLUMNS (new_col2 INT COMMENT 'a comment...修改$SPARK_HOME/conf/spark-defaults.conf,新增 2. spark.scheduler.mode FAIR 3. spark.scheduler.allocation.file
',78)); 创建临时表 临时表,表示在当前用户会话内才有效,数据全都存在用户临时目录中,一旦退出对话,表和数据都会被清除掉 CREATE TEMPORARY TABLE list_bucket_multiple...=true; set hive.exec.dynamic.partition.mode=nonstrict; 全是动态分区插入 注意,select 的字段中,分区字段要在最后面,并且按顺序 insert...WHERE ds is not null and hr>10 INSERT OVERWRITE TABLE R PARTITION (ds='2010-03-03, hr=12) SELECT key...:struct columns { i32 i} partitioned:true partitionColumns:struct partition_columns { string d} totalNumberFiles...将查询结果写入其他表中 通用语法 -- insert overwrite INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2
要求Spark版本2.3以上,亲测2.2无效 配置 config("spark.sql.sources.partitionOverwriteMode","dynamic") 注意 1、saveAsTable...","dynamic") .enableHiveSupport() .getOrCreate() import spark.sql val data = Array(("001", "张三",...", "year") //创建临时表 df.createOrReplaceTempView("temp_table") val tableName="test_partition" //切换hive...spark.createDataFrame(data1).toDF("id", "name", "age", "year") // df1.write.mode("overwrite").partitionBy...("year").saveAsTable(tableName) //不成功,全表覆盖 df1.write.mode("overwrite").insertInto(tableName) spark.table
true 如果为 true , 则启用使用表的 metadata 的 metadata-only query optimization 来生成 partition columns (分区列)而不是 table...当 scanned (扫描)的所有 columns (列)都是 partition columns (分区列)并且 query (查询)具有满足 distinct semantics (不同语义)的 aggregate...在非安全模式下,只需输入机器上的用户名和空白密码即可。 对于安全模式,请按照 beeline 文档 中的说明进行操作。...Datasource tables(数据源表)的 INSERT OVERWRITE TABLE ... PARTITION ... 行为的更改。...在以前的 Spark 版本中,INSERT OVERWRITE 覆盖了整个 Datasource table,即使给出一个指定的 partition.
12 The maximum number of joined nodes allowed in the dynamic programming algorithm. spark.sql.cbo.joinReorder.enabled...query optimization that use the table’s metadata to produce the partition columns instead of table scans...It applies when all the columns scanned are partition columns and the query has an aggregate operator...dynamic....In dynamic mode, Spark doesn’t delete partitions ahead, and only overwrite those partitions that have
; OK 1 20160501 发现结果跟想象中的一样~ 然后修改表字段: ALTER TABLE tb_dw_test REPLACE COLUMNS...(a DECIMAL(5,2)) 然后再次插入数据: insert overwrite table tb_dw_test partition (statis_date=20160501) values...SET hive.exec.dynamic.partition = true; -- hive.exec.dynamic.partition needs to be set to true to...enable dynamic partitioning with ALTER PARTITION -- This will alter all existing partitions of the table...overwrite table tb_dw_test partition (statis_date=20160501) values(1.02); 然后查询: hive> select * from
columns, LIMIT only 2. more : SELECT, FILTER, LIMIT only (support TABLESAMPLE and virtual columns...开启动态分区参数设置 (1)开启动态分区功能(默认 true,开启) hive.exec.dynamic.partition=true (2)设置为非严格模式(动态分区的模式,默认 strict,表示必须指定至少一个分区为静态分区...hive.exec.dynamic.partition.mode=nonstrict (3)在所有执行 MR 的节点上,最大一共可以创建多少个动态分区。...= true; set hive.exec.dynamic.partition.mode = nonstrict; set hive.exec.max.dynamic.partitions = 1000...= false; hive (default)> insert overwrite table ori_partitioned_target partition (p_time) select id
,需要进行参数修改 # 使用动态分区的记录中,必须在指定位置包含动态分区的字段才能被动态分区表识别 hive>set hive.exec.dynamic.partition.mode=nonstrict...; hive> insert overwrite table aiops.tmpOnline partition(dt) select ip,appname,.......: 表生成函数接收零个或者多个输入,然后产生多列或多行输出....高级函数 row_number() over() 三、hive常用的环境变量 环境变量 含义 set hive.cli.print.header=true 设置查询时显示表头 set hive.exec.dynamic.partition...=true 开启动态分区 set hive.exec.dynamic.partition.mode=nonstrict 设置动态分区模式为非严格 set hive.exec.max.dynamic.partitions.pernode
ID' } 字典列去重生成临时表: insert overwrite table temp_table select user_id from fact_log_user_hive_table group...全局ID的生成方式,是用历史表中当前的最大的用户ID加上新增用户的行号: --4 更新Hive字典表 insert overwrite global_dict_by_userid_hive_table..." = "true", "dynamic_partition.time_unit" = "DAY", "dynamic_partition.time_zone" = "Asia/Shanghai",..."dynamic_partition.start" = "-2147483648", "dynamic_partition.end" = "1", "dynamic_partition.prefix..." = "p", "dynamic_partition.replication_num" = "-1", "dynamic_partition.buckets" = "3", "in_memory
的分区partitionCol=20201009中 df.write.mode(SaveMode.Overwrite).format("parquet").save("/bigdatalearnshare.../test_partition_tab/partitionCol=20201009") 4)报错信息 ?...解决方案 -- 使用insert sql进行数据的保存 insert overwrite table test_partition_tab partition(partitionCol=20201009...但是当利用SparkSQL处理数据生成的DataSet/DataFrame进行collect或者show等操作时,抛出以下异常信息: in stage 3.0 (TID 403, localhost,...: Cannot have map type columns in DataFrame which calls set operations(intersect, except, etc.), but
Hive官网 Hive概述 Hive 的底层执行引擎有 :MapReduce,Tez,Spark - Hive on MapReduce - Hive on Tez - Hive on spark...[PARTITION (partcol1=val1,partcol2=val2)] -- [LOCAL] 代表从本地文件系统导入,否则从HDFS中导入 -- [OVERWRITE] 代表覆盖原有的数据...-m {mp进程数} --columns '{col1,col2...}'...target_table} --query 'sql语句' # sql语句必须有 and $CONDITIONS Hive 调优 -- 动态分区,根据插入的记录自动分区 SET hive.exec.dynamic.partition...=true; SET hive.exec.dynamic.partition.mode=nonstrict; -- 并行执行,子查询可以并行执行 SET hive.exec.parallel=true;
0:1); } mapper // 求价格总和 // 偏移量 数据 输出的key 输出的value public class PriceSumMapper extends Mapper...add partition(month='201706') ; 同时创建多个分区 alter table dept_partition add partition(month='201705') partition...添加字段 alter table dept_partition add columns(deptdesc string); 替换字段 alter table dept_partition replace...columns(deptno string, dname string, loc string); 更新列 alter table dept_partition change column deptdesc...password","Su#2021Gjj") .mode("Overwrite") // Overwrite覆盖、Append追加还是其他 .save() // 开始存储
Hive版本: 2.1.1, Spark版本是1.6.0 这几天发现insert overwrite partition运行的很慢,看了下是hive on spark引擎,这引擎平时比mapreduce...The maximum number of dynamic partitions is controlled by hive.exec.max.dynamic.partitions and hive.exec.max.dynamic.partitions.pernode...再设置partitions和partitions.pernode,如下List-3 List-3 set hive.execution.engine=mr; set hive.exec.dynamic.partition...=true; set hive.exec.dynamic.partition.mode=nonstrict; set hive.exec.max.dynamic.partitions.pernode=100000...这样就解决了,但是mr还是慢,没办法要么更换hive/spark版本,要么自己去修改spark源码,先用mr暂时解决下。
decimal(30,6), update_time string ) partitioned by (ds string comment '日期分区'); --动态分区需要设置 set hive.exec.dynamic.partition...=true; set hive.exec.dynamic.partition.mode=nonstrict; insert overwrite table check_t partition (ds)...into table webank_db.debt_temp; --动态分区需要设置 set hive.exec.dynamic.partition=true; set hive.exec.dynamic.partition.mode...=nonstrict; insert overwrite table webank_db.debt partition (ds) select from webank_db.debt_temp; -...decimal(30,6) balance 借据余额 decimal(30,6) is_buliang 状态-是否不良取值0和1 bigint overduedays 逾期天数 bigint 模型输出表
第一个MR Job中,Map的输出结果会随机分布到Reduce中,每个Reduce做部分聚合操作,并输出结果,这样处理的结果是相同的Group By Key有可能被分发到不同的Reduce中,从而达到负载均衡的目的...开启动态分区参数设置 开启动态分区参数设置 set hive.exec.dynamic.partition=true; 设置为非严格模式(动态分区的模式,默认strict,表示必须指定至少一个分区为静态分区...set hive.exec.dynamic.partition.mode=nonstrict; 在所有执行MR的节点上,最大一共可以创建多少个动态分区。...set hive.exec.dynamic.partition = true; set hive.exec.dynamic.partition.mode = nonstrict; set hive.exec.max.dynamic.partitions...; set hive.error.on.empty.partition = false; INSERT overwrite TABLE ori_partitioned_target PARTITION
分区没有提前创建Schema CREATE TABLE IF NOT EXISTS tb_dynamic_partition_test2( `sid` LARGEINT NOT NULL COMMENT...", -- 开启动态分区 "dynamic_partition.start"="-3", -- 保留前三天的分区 "dynamic_partition.end"="1", -- 往后创建一个分区 "dynamic_partition.time_unit..."="DAY", -- 按天分区 "dynamic_partition.prefix"="p_", -- 分区字段以p_开始 "dynamic_partition.replication_num"="1...处理方式,添加对应分区: // 关闭动态分区 ALTER TABLE tb_dynamic_partition_test2 SET ("dynamic_partition.enable" = "false..."); // 添加分区 ALTER TABLE test.tb_dynamic_partition_test2 ADD PARTITION p_20240426 VALUES [("2024-04-26
pwd=s4qc 提取码:s4qc debt.txt文件 set spark.sql.shuffle.partitions=4; create database webank_db; use webank_db...decimal(30,6), update_time string ) partitioned by (ds string comment '日期分区'); --动态分区需要设置 set hive.exec.dynamic.partition...=true; set hive.exec.dynamic.partition.mode=nonstrict; insert overwrite table check_t partition (ds)...into table webank_db.debt_temp; --动态分区需要设置 set hive.exec.dynamic.partition=true; set hive.exec.dynamic.partition.mode...=nonstrict; insert overwrite table webank_db.debt partition (ds) select * from webank_db.debt_temp;
领取专属 10元无门槛券
手把手带您无忧上云