首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Spark SQL 快速入门系列(2) | SparkSession与DataFrame的简单介绍

使用 DataFrame 进行编程   Spark SQL 的 DataFrame API 允许我们使用 DataFrame 而不用必须去注册临时表或者生成 SQL 表达式.   ...有了 SparkSession 之后, 通过 SparkSession有 3 种方式来创建DataFrame: 通过 Spark 的数据源创建 通过已知的 RDD 来创建 通过查询一个 Hive 表来创建...读取json文件创建DataFrame // 读取 json 文件 scala> val df = spark.read.json("file:///opt/module/spark/examples/...从 RDD 到 DataFrame   涉及到RDD, DataFrame, DataSet之间的操作时, 需要导入:import spark.implicits._ 这里的spark不是包名, 而是表示...从 DataFrame到RDD 直接调用DataFrame的rdd方法就完成了从转换. scala> val df = spark.read.json("/opt/module/spark-local/

2.2K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Spark2.x学习笔记:2、Scala简单例子

    2、 Scala简单例子 参考教程:https://yq.aliyun.com/topic/69 2.1 交互式编程 spark-shell是Spark交互式运行模式,提供了交互式编程,边敲代码边执行...在 Scala 中声明变量和常量不一定要指明数据类型,在没有指明数据类型的情况下,其数据类型是通过变量或常量的初始值推断出来的。...)闭包 闭包可以简单的认为是可以访问一个函数里面局部变量的另外一个函数。...Java里你将经常创建一个JavaBean样子的类去装多个返回值,Scala里你可以简单地返回一个元组。而且这么做的确简单:实例化一个装有一些对象的新元组,只要把这些对象放在括号里,并用逗号分隔即可。...object下的成员都是静态的,若有同名的class,这其作为它的伴生类。

    3.1K80

    Spark DataFrame写入HBase的常用方式

    Spark是目前最流行的分布式计算框架,而HBase则是在HDFS之上的列式分布式存储引擎,基于Spark做离线或者实时计算,数据结果保存在HBase中是目前很流行的做法。...基于HBase API批量写入 第一种是最简单的使用方式了,就是基于RDD的分区,由于在spark中一个partition总是存储在一个excutor上,因此可以创建一个HBase连接,提交整个partition...,显得不够友好,如果能跟dataframe保存parquet、csv之类的就好了。...下面就看看怎么实现dataframe直接写入hbase吧! 2. Hortonworks的SHC写入 由于这个插件是hortonworks提供的,maven的中央仓库并没有直接可下载的版本。.../artifact/org.apache.hbase/hbase-spark Hbase spark sql/ dataframe官方文档:https://hbase.apache.org/book.html

    4.3K51

    Spark家族:Win10系统下搭建Scala开发环境

    一、Scala环境基础 Scala对Java相关的类,接口进行了包装,所以依赖Jvm环境。...Jdk 1.8 scala 依赖 scala 2.11 安装版本 idea 2017.3 开发工具 二、配置Scala解压版 1)注意路径无空格和中文 ?...添加到path目录 %SCALA_HOME%\bin 3)检测是否安装 ? 配置成功,没错就是这么简单。 三、配置Idea开发 1)插件安装,就是点点点 ?...2)新建两个maven项目 在scala-base-hello 的 main 目录下创建scala文件夹,如下标记。 ? 3)添加scala框架 ? 4)创建scala代码文件 ? ?...5)一起见证下hello-scala ? 这代码是不是看起来有点四不像? 四、写在结尾 都说万事开头难,现在开了一个完美的头了,剩下的必须都是简单的!

    68650

    基于scala语言的Spark环境搭建

    -2.12.6),为方便使用还可以设置一下SCALA_HOME,在终端输入~/tools/scala-2.12.6/bin/scala(未设置SCALA_HOME)或scala(前提设置了SCALA_HOME...)可以验证scala的版本或进行交互实验(scala官网推荐的图书《Programming in Scala, 3rd ed》中的实例均为在此模式下运行,故学习scala阶段到这一步就够了) 下载IntelliJ...maven project,并在src下创建source root(可以在package上右键更改) 图片 source root(该项目中为main.java)上右键–>New–>Scala Class.../sbin/start-slave.sh spark://xxxx-xxx:7077> 开发测试程序 下面开发一个超级简单的rdd任务,逻辑(统计hdfs文件中包含单词form的行及行数,并将结果保存到...使用上面准备好的Scala环境,创建一个scala maven project:mvn-rdd-test 编写代码 package com.tencent.omg import org.apache.spark

    49620

    scala快速入门系列(1) | scala的简单介绍

    一. scala的前世今生 ?   联邦理工学院的马丁·奥德斯基(Martin Odersky)于2001年开始设计Scala。   ...马丁·奥德斯基是编译器及编程的狂热爱好者,长时间的编程之后,希望发明一种语言,能够让写程序这样的基础工作变得高效,简单。...一般来说,学Scala的人,都会Java,而Scala是基于Java的,因此我们需要将Scala和Java以及JVM 之间的关系搞清楚,否则学习Scala你会蒙圈。...早期,scala刚出现的时候,并没有怎么引起重视,随着Spark和 Kafka这样基于scala的大数据框架的兴起,scala逐步进入大数据开发者的眼帘。scala的主要优势是它的表达性。...为什么要使用scala 开发大数据应用程序(Spark程序、Flink程序) 表达能力强,一行代码抵得上Java多行,开发速度快。

    54710

    Spark常用的算子以及Scala函数总结

    Spark与Scala 首先,介绍一下scala语言: Scala 是一种把面向对象和函数式编程理念加入到静态类型语言中的混血儿。 为什么学scala?...1、spark本身就是用scala写的,采用与底层框架相同的语言有很多好处,例如以后你要看源码...... 2、性能开销小,scala可以直接编译运行在java的JVM上 3、能用上最新的版本。...开始使用spark的,你不学scala还让你师父转python啊!...新手学习Spark编程,在熟悉了Scala语言的基础上,首先需要对以下常用的Spark算子或者Scala函数比较熟悉,才能开始动手写能解决实际业务的代码。...简单来说,Spark 算子大致可以分为以下两类: Transformation 变换/转换算子:这种变换并不触发提交作业,完成作业中间过程处理。

    4.9K20

    Spark常用的算子以及Scala函数总结

    Spark与Scala 首先,介绍一下scala语言: Scala 是一种把面向对象和函数式编程理念加入到静态类型语言中的混血儿。 为什么学scala?...1、spark本身就是用scala写的,采用与底层框架相同的语言有很多好处,例如以后你要看源码...... 2、性能开销小,scala可以直接编译运行在java的JVM上 3、能用上最新的版本。...spark的,你不学scala还让你师父转python啊!...新手学习Spark编程,在熟悉了Scala语言的基础上,首先需要对以下常用的Spark算子或者Scala函数比较熟悉,才能开始动手写能解决实际业务的代码。...简单来说,Spark 算子大致可以分为以下两类: 1、Transformation 变换/转换算子:这种变换并不触发提交作业,完成作业中间过程处理。

    1.9K120

    SQL、Pandas和Spark:这个库,实现了三大数据分析工具的大一统

    当然,这里的Spark是基于Scala语言版本,所以这3个工具实际分别代表了SQL、Python和Scala三种编程语言,而在不同语言中自然是不便于数据统一和交互的。...由于Spark是基于Scala语言实现的大数据组件,而Scala语言又是运行在JVM虚拟机上的,所以Spark自然依赖JDK,截止目前为止JDK8依然可用,而且几乎是安装各大数据组件时的首选。...是时候总结一波Python环境搭建问题了 2)Spark官网下载指定tar包解压 与其他大数据组件不同,Spark实际上提供了windows系统下良好的兼容运行环境,而且方式也非常简单。...的API丰富多样以及Spark的分布式大数据处理能力,但同时不幸的是这几个工具也都有各自的弱点,比如SQL仅能用于处理一些简单的需求,复杂的逻辑实现不太可能;Pandas只能单机运行、大数据处理乏力;Spark...畅想一下,可以在三种数据分析工具间任意切换使用了,比如在大数据阶段用Spark,在数据过滤后再用Pandas的丰富API,偶尔再来几句SQL!

    1.8K40

    基于Alluxio系统的Spark DataFrame高效存储管理技术

    Alluxio和Spark缓存 用户使用Alluxio存储Spark DataFrame非常简单:通过Spark DataFrame write API将DataFrame作为一个文件写入Alluxio...同时通过改变DataFrame的大小来展示存储的DataFrame的规模对性能的影响。 存储DataFrame Spark DataFrame可以使用persist() API存储到Spark缓存中。...当DataFrame存储在Alluxio时,Spark读取DataFrame就像从Alluxio中读取文件一样简单。...下图显示了2次聚合操作的完成时间性能对比。使用Alluxio的情况下,聚合操作快了约2.5倍。 ? 在上图的实验中,数据源是本地SSD。...这种性能的不稳定性从上图中的误差范围(error bar)可以很明显地看出。在不使用Alluxio的情况下,Spark作业的完成时间变化范围超过1100秒。

    1K100

    Apache Spark中使用DataFrame的统计和数学函数

    我们在Apache Spark 1.3版本中引入了DataFrame功能, 使得Apache Spark更容易用....列联表是统计学中的一个强大的工具, 用于观察变量的统计显着性(或独立性). 在Spark 1.4中, 用户将能够将DataFrame的两列进行交叉以获得在这些列中观察到的不同对的计数....也就是说, 不同的names和items的数量不能太大. 试想一下, 如果items包含10亿个不同的项目:你将如何适应你的屏幕上一大堆条目的表?...5.出现次数多的项目 找出每列中哪些项目频繁出现, 这对理解数据集非常有用. 在Spark 1.4中, 用户将能够使用DataFrame找到一组列的频繁项目....Python, Scala和Java中提供, 在Spark 1.4中也同样会提供, 此版本将在未来几天发布.

    14.6K60

    Spark 1.4为DataFrame新增的统计与数学函数

    Spark一直都在快速地更新中,性能越来越快,功能越来越强大。我们既可以参与其中,也可以乐享其成。 目前,Spark 1.4版本在社区已经进入投票阶段,在Github上也提供了1.4的分支版本。...最近,Databricks的工程师撰写了博客,介绍了Spark 1.4为DataFrame新增的统计与数学函数。...为DataFrame新增加的数学函数都是我们在做数据分析中常常用到的,包括cos、sin、floor、ceil以及pow、hypot等。...以上新特性都会在Spark 1.4版本中得到支持,并且支持Python、Scala和Java。...在未来发布的版本中,DataBricks还将继续增强统计功能,并使得DataFrame可以更好地与Spark机器学习库MLlib集成,例如Spearman Correlation(斯皮尔曼相关)、针对协方差运算与相关性运算的聚合函数等

    1.2K70
    领券