excelperfect 在下图1所示的工作簿Data.xlsx的工作表Sheet1中,存放着待使用的数据。 ?...图1 在下图2所示的工作簿GetData.xlsm中,根据列C中的数据,在上图1的工作簿Data.xlsx的列E中查找是否存在相应数据的单元格。 ?...图2 然后,将Data.xlsx中对应行的列I至列K单元格中的数据复制到GetData.xlsm相应的单元格中,如下图3所示。 ?...Set wksData =Workbooks("Data.xlsx").Sheets("Sheet1") '判断所选单元格是否在列C中 If ActiveCell.Column... 3 Then MsgBox ("请选择列C中的单元格或单元格区域.")
如果工作流从 Hive 加载 DataFrame 并将生成的 DataFrame 保存为 Hive 表,在整个查询执行过程中,所有数据操作都在 Java Spark 工作线程中以分布式方式执行,这使得...这意味着在UDF中将这些列转换为JSON,返回Pandas数据帧,并最终将Spark数据帧中的相应列从JSON转换为复杂类型 [2enpwvagkq.png] 5.实现 将实现分为三种不同的功能: 1)...数据帧转换为一个新的数据帧,其中所有具有复杂类型的列都被JSON字符串替换。...但首先,使用 complex_dtypes_to_json 来获取转换后的 Spark 数据帧 df_json 和转换后的列 ct_cols。...如果的 UDF 删除列或添加具有复杂数据类型的其他列,则必须相应地更改 cols_out。
spark dataframe派生于RDD类,但是提供了非常强大的数据操作功能。当然主要对类SQL的支持。 在实际工作中会遇到这样的情况,主要是会进行两个数据集的筛选、合并,重新入库。...首先加载数据集,然后在提取数据集的前几行过程中,才找到limit的函数。 而合并就用到union函数,重新入库,就是registerTemple注册成表,再进行写入到HIVE中。...scala> val fes = hiveContext.sql(sqlss) fes: org.apache.spark.sql.DataFrame = [caller_num: string, is_sr...dataframe类型的, 13、 unpersist() 返回dataframe.this.type 类型,去除模式中的数据 14、 unpersist(blocking:Boolean)返回dataframe.this.type...Column) 删除某列 返回dataframe类型 10、 dropDuplicates(colNames: Array[String]) 删除相同的列 返回一个dataframe 11、 except
创建 DataFrames Scala Java Python R 在一个 SparkSession中, 应用程序可以从一个 已经存在的 RDD, 从hive表, 或者从 Spark数据源中创建一个...他们描述如何从多个 worker 并行读取数据时将表给分区。partitionColumn 必须是有问题的表中的数字列。...您可以调用 spark.catalog.uncacheTable("tableName") 从内存中删除该表。...属性名称 默认 含义 spark.sql.inMemoryColumnarStorage.compressed true 当设置为 true 时,Spark SQL 将根据数据的统计信息为每个列自动选择一个压缩编解码器...从 Spark SQL 1.0-1.2 升级到 1.3 在 Spark 1.3 中,我们从 Spark SQL 中删除了 “Alpha” 的标签,作为一部分已经清理过的可用的 API 。
DataFrame 2.1 创建 在Spark SQL中SparkSession是创建DataFrame和执行SQL的入口,创建DataFrame有三种方式:通过Spark的数据源进行创建;从一个存在的...hadoop fs -put /opt/data/people.json /input ok~ 1) 从Spark数据源进行创建 (1) 查看Spark数据源进行创建的文件格式, spark.read...全局的临时视图存在于系统数据库 global_temp中,我们必须加上库名去引用它 5)对于DataFrame创建一个全局表 scala> df.createGlobalTempView("people...= true) |-- name: string (nullable = true) 3)只查看"name"列数据 scala> df.select("name").show() +-------+...| name| +-------+ |Michael| | Andy| | Justin| +-------+ 4)查看"name"列数据以及"age+1"数据 scala> df.select
Spark SQL 也支持从 Hive 中读取数据,如何配置将会在下文中介绍。使用编码方式来执行 SQL 将会返回一个 Dataset/DataFrame。...DataFrames(Dataset 亦是如此) 可以从很多数据中构造,比如:结构化文件、Hive 中的表,数据库,已存在的 RDDs。...Parquet 格式 Parquet 是很多数据处理系统都支持的列存储格式,其相对于行存储具有以下优势: 可以跳过不符合条件的数据,只读取需要的数据,降低 IO 数据量 压缩编码可以降低磁盘存储空间。...SQL 也支持从 Hive 中读取数据以及保存数据到 Hive 中。...若设置为 true,Spark SQL 会根据每列的类型自动为每列选择一个压缩器进行数据压缩 spark.sql.inMemoryColumnarStorage.batchSize 10000 设置一次处理多少
场景 • 可以添加、删除、修改和移动列(包括嵌套列) • 分区列不能演进 • 不能对 Array 类型的嵌套列进行添加、删除或操作 SparkSQL模式演进以及语法描述 使用模式演进之前,请先设置spark.sql.extensions...然而如果 upsert 触及所有基本文件,则读取将成功 添加自定义可为空的 Hudi 元列,例如 _hoodie_meta_col Yes Yes 将根级别字段的数据类型从 int 提升为 long...将嵌套字段的数据类型从 int 提升为 long Yes Yes 对于复杂类型(map或array的值),将数据类型从 int 提升为 long Yes Yes 在最后的根级别添加一个新的不可为空的列...作为一种解决方法,您可以使该字段为空 向内部结构添加一个新的不可为空的列(最后) No No 将嵌套字段的数据类型从 long 更改为 int No No 将复杂类型的数据类型从 long 更改为...在下面的示例中,我们将添加一个新的字符串字段并将字段的数据类型从 int 更改为 long。
此外,这个模型自然地处理了比预计将根据它的 event-time 到达的数据晚到的数据。...如果这些 columns (列)显示在用户提供的 schema 中,则它们将根据正在读取的文件路径由 Spark 进行填充。...该查询将使用 watermark 从以前的记录中删除旧的状态数据,这些记录不会再受到任何重复。 这界定了查询必须维护的状态量。...Complete mode (完全模式)不会删除旧的聚合状态,因为从定义这个模式 保留 Result Table 中的所有数据。...从 Spark 2.1 开始,这只适用于 Scala 和 Java 。
一、简介 Spark SQL是spark主要组成模块之一,其主要作用与结构化数据,与hadoop生态中的hive是对标的。...2.jpg 下面就是从tdw表中读取对应的表格数据,然后就可以使用DataFrame的API来操作数据表格,其中TDWSQLProvider是数平提供的spark tookit,可以在KM上找到这些API...3.jpg 这段代码的意思是从tdw 表中读取对应分区的数据,select出表格中对应的字段(这里面的字段名字就是表格字段名字,需要用双引号)toDF将筛选出来的字段转换成DataFrame,在进行groupBy...Column) 删除某列 返回dataframe类型 10、 dropDuplicates(colNames: Array[String]) 删除相同的列 返回一个dataframe 11、 except...column 6.jpg 根据条件进行过滤 7.jpg 首先是filter函数,这个跟RDD的是类同的,根据条件进行逐行过滤。
如果您用上面的示例替换上面示例中的目录,table.show()将显示仅包含这两列的PySpark Dataframe。...使用hbase.columns.mapping 同样,我们可以使用hbase.columns.mapping将HBase表加载到PySpark数据帧中。...但是,要执行此操作,我们需要在从HBase加载的PySpark数据框上创建视图。让我们从上面的“ hbase.column.mappings”示例中加载的数据帧开始。...HBase通过批量操作实现了这一点,并且使用Scala和Java编写的Spark程序支持HBase。...确保根据选择的部署(CDSW与spark-shell / submit)为运行时提供正确的jar。 结论 PySpark现在可用于转换和访问HBase中的数据。
Spark SQL外部数据源API的一大优势在于,可以将查询中的各种信息下推至数据源处,从而充分利用数据源自身的优化能力来完成列剪枝、过滤条件下推等优化,实现减少IO、提高执行效率的目的。...减少数据读取 分析大数据,最快的方法就是——忽略它。这里的“忽略”并不是熟视无睹,而是根据查询条件进行恰当的剪枝。...上文讨论分区表时提到的分区剪枝便是其中一种——当查询的过滤条件中涉及到分区列时,我们可以根据查询条件剪掉肯定不包含目标数据的分区目录,从而减少IO。...对于一些“智能”数据格式,Spark SQL还可以根据数据文件中附带的统计信息来进行剪枝。...得到的优化执行计划在转换成物理执行计划的过程中,还可以根据具体的数据源的特性将过滤条件下推只数据源内。
从行上看,可以把 DataFrame 看做行标签到行的映射,且行之间保证顺序;从列上看,可以看做列类型到列标签到列的映射,同样,列间同样保证顺序。 行标签和列标签的存在,让选择数据时非常方便。...试想,对于关系系统来说,恐怕需要想办法找一列作为 join 的条件,然后再做减法等等。最后,对于空数据,我们还可以填充上一行(ffill)或者下一行的数据(bfill)。...图里的示例中,一个行数 380、列数 370 的 DataFrame,被 Mars 分成 3x3 一共 9 个 chunk,根据计算在 CPU 还是 NVIDIA GPU 上进行,用 pandas DataFrame...在单机真正执行时,根据初始数据的位置,Mars 会自动把数据分散到多核或者多卡执行;对于分布式,会将计算分散到多台机器执行。 Mars DataFrame 保留了行标签、列标签和类型的概念。...因此能够想象如同 pandas 一样,可以在比较大的数据集上根据标签进行筛选。
Java源码字符串进行JIT的过程,而且根据不同的输入表数据量,Spark内部会适时选择BrocastHashJoin、SortMergeJoin或ShuffleHashJoin来实现,普通用户无法用RDD...源码中,还有一些语法检查类和优化器类都会检查内部支持的join type,因此在Analyzer.scala、Optimizer.scala、basicLogicalOperators.scala、SparkStrategies.scala...从结果上看性能差异也很明显,由于右表数据量都比较小,因此这三组数据Spark都会优化成broadcast join的实现,由于LeftOuterJoin会拼接多行,因此性能就比新的LastJoin慢很多...从结果上看性能差异已经没有那么明显了,但LastJoin还是会比前者方案快接近一倍,前面两组右表数据量比较小被Spark优化成broadcast join实现,最后一组没有优化会使用sorge merge...技术总结 最后简单总结下,OpenMLDB项目通过理解和修改Spark源码,可以根据业务场景来实现新的拼表算法逻辑,从性能上看比使用原生Spark接口实现性能可以有巨大的提升。
这意味着系统需要知道何时可以从内存状态中删除旧聚合,因为应用程序不会再为该聚合接收到较晚的数据。...watermark 清理聚合状态的条件重要的是要注意,为了清除聚合查询中的状态(从Spark 2.1.1开始,将来会更改),必须满足以下条件。 A),输出模式必须是Append或者Update。...这与使用唯一标识符列的静态重复数据删除完全相同。该查询将存储先前记录所需的数据量,以便可以过滤重复的记录。与聚合类似,您可以使用带有或不带有watermark 的重复数据删除功能。...A),带watermark:如果重复记录可能到达的时间有上限,则可以在事件时间列上定义watermark ,并使用guid和事件时间列进行重复数据删除。...E),有条件地支持流和静态数据集之间的外连接。
什么是DataFrame 在Spark中,DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库中的二维表格。...从Spark数据源进行创建 查看Spark数据源进行创建的文件格式 scala> spark.read. csv format jdbc json load option options...[6] at map at :33 根据数据及给定的schema创建DataFrame scala> val dataFrame = spark.createDataFrame(data...foreach,三者才会开始遍历数据 三者都会根据spark的内存进行自动缓存运算,当数据量超大时候会自动写到磁盘,不用担心内存溢出。...SQL可以通过JDBC从关系型数据库中读取数据的方式创建DataFrame,通过对DataFrame一系列的计算后,还可以将数据再写回关系型数据库中。
在已知的几种大数据处理软件中,Hadoop的HBase采用列存储,MongoDB是文档型的行存储,Lexst是二进制型的行存储。 1.列存储 什么是列存储? ...3)还有数据修改,这实际也是一次写入过程。不同的是,数据修改是对磁盘上的记录做删除标记。行存储是在指定位置写入一次,列存储是将磁盘定位到多个列上分别写入,这个过程仍是行存储的列数倍。...4)从数据的压缩以及更性能的读取来对比 ? ?...2)很多列式数据库还支持列族(column group,Bigtable系统中称为locality group),即将多个经常一起访问的数据列的各个值存放在一起。...如果读取的数据列属于相同的列族,列式数据库可以从相同的地方一次性读取多个数据列的值,避免了多个数据列的合并。列族是一种行列混合存储模式,这种模式能够同时满足OLTP和OLAP的查询需求。
Apache Spark是一个对开发者提供完备的库和API的集群计算系统,并且支持多种语言,包括Java,Python,R和Scala。...3.1、从Spark数据源开始 DataFrame可以通过读txt,csv,json和parquet文件格式来创建。...5.2、“When”操作 在第一个例子中,“title”列被选中并添加了一个“when”条件。...接下来,你可以找到增加/修改/删除列操作的例子。...列的删除可通过两种方式实现:在drop()函数中添加一个组列名,或在drop函数中指出具体的列。
在已知的几种大数据处理软件中,Hadoop的HBase采用列存储,MongoDB是文档型的行存储,Lexst是二进制型的行存储。 1.列存储 什么是列存储?...3)还有数据修改,这实际也是一次写入过程。不同的是,数据修改是对磁盘上的记录做删除标记。行存储是在指定位置写入一次,列存储是将磁盘定位到多个列上分别写入,这个过程仍是行存储的列数倍。...4)从数据的压缩以及更性能的读取来对比 ? ?...2)很多列式数据库还支持列族(column group,Bigtable系统中称为locality group),即将多个经常一起访问的数据列的各个值存放在一起。...如果读取的数据列属于相同的列族,列式数据库可以从相同的地方一次性读取多个数据列的值,避免了多个数据列的合并。列族是一种行列混合存储模式,这种模式能够同时满足OLTP和OLAP的查询需求。
,根据各种RBO,CBO优化策略得到optimized logical plan/OLP,主要是对Logical Plan进行剪枝,合并等操作,进而删除掉一些无用计算,或对一些计算的多个步骤进行合并 other...parser切词 Spark 1.x版本使用的是Scala原生的Parser Combinator构建词法和语法分析器,而Spark 2.x版本使用的是第三方语法解析器工具ANTLR4。...然后在parsePlan过程中,使用AstBuilder.scala将ParseTree转换成catalyst表达式逻辑计划LogicalPlan。...Analyzer会再次遍历整个AST,对树上的每个节点进行数据类型绑定以及函数绑定,比如people词素会根据元数据表信息解析为包含age、id以及name三列的表,people.age会被解析为数据类型为...比如join算子,spark根据不同场景为该算子制定了不同的算法策略,有broadcastHashJoin、shuffleHashJoin以及sortMergeJoin,物理执行计划实际上就是在这些具体实现中挑选一个耗时最小的算法实现
了解了Spark SQL的起源,那么其功能定位自然也十分清晰:基于DataFrame这一核心数据结构,提供类似数据库和数仓的核心功能,贯穿大部分数据处理流程:从ETL到数据处理到数据挖掘(机器学习)。...注:由于Spark是基于scala语言实现,所以PySpark在变量和函数命名中也普遍采用驼峰命名法(首单词小写,后面单次首字母大写,例如someFunction),而非Python中的蛇形命名(各单词均小写...1)创建DataFrame的方式主要有两大类: 从其他数据类型转换,包括RDD、嵌套list、pd.DataFrame等,主要是通过spark.createDataFrame()接口创建 从文件、数据库中读取创建...groupby/groupBy:分组聚合 分组聚合是数据分析中最为常用的基础操作,其基本用法也与SQL中的group by关键字完全类似,既可直接根据某一字段执行聚合统计,也可根据某一列的简单运算结果进行统计...,当接收列名时则仅当相应列为空时才删除;当接收阈值参数时,则根据各行空值个数是否达到指定阈值进行删除与否 dropDuplicates/drop_duplicates:删除重复行 二者为同名函数,与pandas
领取专属 10元无门槛券
手把手带您无忧上云