首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

SavedModel模型保存和加载: ValueError:找不到匹配的函数以调用从Keras加载的函数

SavedModel是TensorFlow中用于保存和加载机器学习模型的格式。它是一种可移植的模型表示形式,可以在不同的平台和环境中使用。当使用Keras构建和训练模型后,可以使用SavedModel将其保存到磁盘上,并在需要时重新加载。

ValueError:找不到匹配的函数以调用从Keras加载的函数是一个错误提示,意味着在加载SavedModel时找不到匹配的函数。这可能是由于以下原因导致的:

  1. 版本不匹配:确保使用的TensorFlow版本与保存模型时使用的版本相同。不同版本之间的API可能会有所不同,导致加载模型时出现错误。
  2. 模型文件路径错误:检查模型文件的路径是否正确,并确保文件存在。如果路径不正确,加载函数将无法找到模型文件。
  3. 模型结构不匹配:如果在加载模型时更改了模型的结构,例如添加或删除了层,加载函数可能无法找到匹配的函数。确保加载模型时的模型结构与保存模型时的结构完全一致。

解决此错误的方法包括:

  1. 确保使用相同版本的TensorFlow。
  2. 检查模型文件路径是否正确,并确保文件存在。
  3. 确保加载模型时的模型结构与保存模型时的结构完全一致。

如果以上方法都无法解决问题,可以尝试重新训练和保存模型,确保保存的模型文件没有损坏或缺失。此外,可以查阅TensorFlow官方文档或社区论坛,寻找类似问题的解决方案。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

tf.lite

三、tf.lite.OpHint.OpHintArgumentTracker从概念上跟踪“OpHint 函数”参数的索引。这些函数的输入和参数都使用类的实例,因此它们可以有独立的编号。...返回值:包含张量信息的字典列表。7、invokeinvoke()调用解释器。在调用此函数之前,请确保设置输入大小、分配张量和填充值。...这允许读写这个张量的w/o拷贝。这更紧密地反映了c++解释器类接口的张量()成员,因此得名。注意不要通过调用allocate_tenators()和invoke()来保存这些输出引用。...永久保存该函数是安全的,但是永久保存numpy数组是不安全的。五、tf.lite.OpsSet类定义可用于生成TFLite模型的操作系统集。...参数:input_gen:一个输入生成器,可用于为模型生成输入样本。这必须是一个可调用的对象,返回一个支持iter()协议的对象(例如一个生成器函数)。生成的元素必须具有与模型输入相同的类型和形状。

5.3K60

【TensorFlow2.x开发—基础】 模型保存、加载、使用

保存整个模型时,有两种格式可以实现,分别是SaveModel和HDF5;在TF2.x中默认使用SavedModel格式。...格式保存模型,保存后是xxx.h5的文件 model.save("my_model.h5") 1.2)加载使用模型 加载模型: # 重新创建完成相同的模型,包括权值和优化程序等 new_model =...2.1)保存模型 创建并训练一个新的模型实例,然后把训练好模型保存在saved_model 目录下,保存模型的名称为:my_model ​ SavedModel 格式是一个包含 protobuf 二进制文件和...2.2)加载使用模型 加载保存好的模型: ​ 使用模型: ​ 代码版 HDF5格式: # 导入Tensorflow和依赖项 import os import tensorflow as tf from...,分别是SaveModel和HDF5;两种都是使用model.save() 保存模块,使用tf.keras.models.loda_model加载模型; HDF5格式 保存模型后,生成xxx.h5,比较常用

4.6K00
  • TF-char8-Keras高层接口

    ---- 常见功能模块 Keras提供常见的神经网络类和函数 数据集加载函数 网络层类 模型容器 损失函数 优化器类 经典模型 常见网络层 张量方式tf.nn模块中 层方式tf.keras.layers...模型装配、训练和测试 装配 通过两个主要的类实现: keras.Model,网络的母类,Sequentail类是其子类 keras.layers.Layer,网络层的母类 通过compile...,out为网络输出 print(out) network.evaluate(db_test) # 模型测试 模型加载 张量方式 文件中保存的仅仅是参数张量的数值,没有其他的结构参数,需要使用相同的网络结构才能恢复网络数据...(network, path)即可将模型以 SavedModel 方式保存到 path 目录中: tf.keras.experimental.export_saved_model(network, 'model-savedmodel...') # 保存模型结构与参数 del network # 从文件中恢复网络 network = tf.keras.experimental.load_from_saved_model('model-savedmodel

    48920

    SavedModel格式TensorFlow模型转为frozen graph

    本文介绍基于Python的tensorflow库,将tensorflow与keras训练好的SavedModel格式神经网络模型转换为frozen graph格式,从而可以用OpenCV库在C++等其他语言中将其打开的方法...但是,由于训练模型时使用的是2.X版本的tensorflow库(且用的是keras的框架),所以训练模型后保存的是SavedModel格式的神经网络模型文件——就是包含3个.pb格式文件,以及assets...随后,加载我们待转换的、SavedModel格式的tensorflow神经网络模型。...之所以会这样,应该是因为我当初训练这个神经网络模型时,用的是tensorflow中keras模块的Model,所以导致加载模型时,就不能用传统的加载SavedModel格式模型的方法了(可能是这样)。...接下来,我们从初始模型中获取其签名。

    15710

    TensorFlow 2.0 的新增功能:第三、四部分

    这意味着,最终,在 TensorFlow 中创建的任何模型,无论其创建方式如何,都将转换为统一的计算图。 这样就可以使用一个统一的格式保存和加载所有模型。...该模型可以是任何东西,从tf.keras自定义训练模型到从 TF 本身获取的预训练模型。 TFLite 入门 使用 TFLite 的第一步是选择要转换和使用的模型。...可以通过三种方式将 TF 模型转换为 TFLite 模型:从已保存的模型,tf.keras模型或具体函数。...可以使用self.add_weight函数完成此操作,以使 Keras 跟踪变量和正则化损失。 call():在输入张量上调用模型时,将运行此方法。...第一步是将所有模型创建代码更改为 TF 2.0 代码,这涉及使用对函数的sess.run调用,以及将占位符和字典馈入函数的参数来更改张量。

    2.4K20

    高效的TensorFlow 2.0:应用最佳实践以及有什么变化

    如果您失去了对 tf.Variable 的追踪,就会被垃圾回收。 函数,而不是会话 session.run() 调用几乎就像一个函数调用:指定输入和要调用的函数,然后返回一组输出。...这种机制允许TensorFlow 2.0获得图形模式的所有好处: 性能:可以优化函数(节点修剪、内核融合等) 可移植性:函数可以导出/重新导入(SavedModel 2.0 RFC),允许用户重用和共享模块化...使用Keras图层和模型来管理变量 Keras模型和图层提供方便的变量和 trainable_variables 属性,以递归方式收集所有关联变量,这样可以轻松地将变量本地管理到它们的使用位置。...Keras层/模型继承自tf.train.Checkpointable并与@ tf.function集成,这使得直接获得检查点或从Keras对象导出SavedModel成为可能。...您不一定要使用Keras’s.fit()API来进行这些集成。 组合tf.data.Datasets和@tf.function 迭代加载到内存的训练数据时,可以随意使用常规的Python迭代。

    85630

    TensorFlow2.0+的API结构梳理

    架构 使用tf.data加载数据,高效的数据输入管道也可以极大的减少模型训练时间,管道执行的过程包括:从硬盘中读取数据(Extract)、数据的预处理如数据清洗、格式转换(Transform)、加载到计算设备...: inputs = tf.keras.Input(shape=(32,)) # 网络层像函数一样被调用,输出和输入都是张量 x = layers.Dense(64, activation='relu'...(0.2), loss='binary_crossentropy') 模型的保存和恢复示例代码: # 完整模型的保存和读取 model.save('my_model') model = tf.keras.models.load_model...模块 加载数据tf.data 构建、训练和验证模型tf.keras activations: tf.keras.activations 中包含了当前主流的激活函数,可以直接通过该API进行激活函数的调用...layers: tf.keras.layers 中包含了已经定义好的常用的神经网络层。 losses: tf.keras.losses 中包含了常用的损失函数,可以根据实际需求直接进行调用。

    87830

    如何将训练好的Python模型给JavaScript使用?

    前言从前面的Tensorflow环境搭建到目标检测模型迁移学习,已经完成了一个简答的扑克牌检测器,不管是从图片还是视频都能从画面中识别出有扑克的目标,并标识出扑克点数。...(命令参数和选项带--为选项)converter转换指令后面主要携带四个参数,分别是输入模型的格式,输出模型的格式,输入模型的路径,输出模型的路径,更多帮助信息可以通过以下命令查看,另附命令分解图。...--output_format输出模型的格式, 分别有tfjs_graph_model (tensorflow.js图模型,保存后的web模型没有了再训练能力,适合SavedModel输入格式转换),tfjs_layers_model...--saved_model_tags只对SavedModel转换用的选项:输入需要加载的MetaGraphDef相对应的tag,多个tag请用逗号分隔。默认为serve。2.6....--signature_name对TensorFlow Hub module和SavedModel转换用的选项:对应要加载的签名,默认为default。2.7.

    17610

    TensorFlow 2.0 的新增功能:第一、二部分

    简而言之,Keras 公开了用户友好的 API,用于执行常见任务,例如加载数据,构建模型,训练模型,评估模型,运行模型以及加载和保存以前的模型。...加载和保存架构 在tf.Keras Python API 中,架构交换的基本单元是 Python dict。 Keras 模型使用get_config()方法从现有模型生成此dict。...对于从配置对象生成模型的逆用例,… 加载和保存权重 在 Python API 中,tensorflow.keras使用 NumPy 数组作为权重交换的单元。...它们被传递给fit(...)函数以自定义和扩展训练过程中模型的行为。...此外,训练结束后,需要加载模型以进行推理和部署。 为了能够做到这一点,需要保存模型的训练权重和参数以备将来使用。 TF 2.0 提供了支持,可以轻松完成此操作,因为可以在训练期间和训练后保存模型。

    3.7K10

    在TensorFlow 2中实现完全卷积网络(FCN)

    用于图像分类和对象检测任务的预训练模型通常在固定的输入图像尺寸上训练。这些通常从224x224x3到某个范围变化,512x512x3并且大多数具有1的长宽比,即图像的宽度和高度相等。...在本教程中,将执行以下步骤: 使用Keras在TensorFlow中构建完全卷积网络(FCN) 下载并拆分样本数据集 在Keras中创建生成器以加载和处理内存中的一批数据 训练具有可变批次尺寸的网络 使用...FCN_model:需要指定最终输出层中所需的类数。 将上述对象传递给train()使用Adam优化器和分类交叉熵损失函数编译模型的函数。创建一个检查点回调,以在训练期间保存最佳模型。...最佳模型是根据每个时期结束时的验证集计算出的损失值确定的。fit_generator()函数在很大程度上简化了代码。...该脚本使用TensorFlow 2.0中的新功能,该功能从.h5文件中加载Keras模型并将其保存为TensorFlow SavedModel格式。

    5.2K31

    《Scikit-Learn、Keras与TensorFlow机器学习实用指南(第二版)》第19章 规模化训练和部署TensorFlow模型

    只需传入模型,配置名字、版本号,这个函数就能保存模型的计算图和权重: model = keras.models.Sequential([...]) model.compile([...]) history...将预处理和模型绑定,还能防止两者不匹配。...但是,返回的对象不是Keras模型:是SavedModel,包括计算图和变量值。...但是,当你将tf.keras模型传给函数tf.saved_model.save(),默认存储的是一个简化的SavedModel:保存一个元图,标签是"serve",包含两个签名定义,一个初始化函数(__...保存tf.keras模型时,默认服务函数对应模型的call()函数。 saved_model_cli也可以用来做预测(用于测试,不是生产)。

    6.7K20

    文末福利|一文上手TensorFlow2.0(一)

    模型的参数是保存在变量中的,在模型的训练过程中,参数在不断地更新。变量的值可以修改,但是维度不可以变。) tf.constant(常量,常量定义时必须初始化值,且定义后其值和维度不可再改变。)...使用函数而不是会话 在TensorFlow 1.x中,我们使用“session.run()”方法执行计算图,“session.run()”方法的调用类似于函数调用:指定输入数据和调用的方法,最后返回输出结果...为了保留静态图的一些优势,例如性能优化以及重用模块化的TensorFlow函数等,在TensorFlow2.0中,我们可以使用“tf.function()”来修饰python函数以将其标记为即时(Just-In-Time...使用tf.keras或PremadeEstimators构建、训练和验证模型 tf.keras作为TensorFlow的核心高级API,其已经和TensorFlow的其余部分紧密集成,使用tf.keras...使用SavedModel存储模型 在TensorFlow中有两种模型存储的格式,一个是检查点(checkpoints),另一个是SavedModel,前者依赖于创建模型的源代码,而后者则与创建模型的源代码无关

    1.3K31

    TensorFlow 2.0入门

    编译和训练模型 在Keras中,编译模型只是将其配置为训练,即它设置在训练期间使用的优化器,损失函数和度量。为了训练给定数量的时期(数据集的迭代)的模型,.fit()在model对象上调用该函数。...可以通过调用它们直接将train和validation对象传递给.fit()函数,.repeat()以便训练在指定数量的历元数据集上循环。...由于对模型进行了更改,因此需要在调用.fit函数之前重新编译模型。...将Keras模型导出为SavedModel格式 要将训练过的模型加载到TensorFlow服务器中,首先需要以SavedModel格式导出它。...最后使用TensorFlow Serving服务器部署了训练过的模型。这样只需调用URL端点,即可轻松将模型集成到网站和其他应用程序中。

    1.8K30

    动态 | TensorFlow 2.0 新特性来啦,部分模型、库和 API 已经可以使用

    TensorFlow 2.0 将重点放在简单和易用性上,它做了以下更新: 用 Keras 建立简单的模型并执行 在任何平台上的生产中进行强大的模型部署 强大的研究实验 通过清除不推荐使用的 API 和减少重复来简化...TensorFlow 的实现包含一些增强功能,包括用于即时迭代和直观调试的功能等。 下面是一个工作流示例(在接下来的几个月里,我们将努力更新下面链接的指南): 使用 tf.data 加载数据。...使用 tf.keras 构建、训练和验证您的模型,或者使用 Premade Estimators 来验证您的模型。...强大的研究实验 TensorFlow 2.0 包含了许多功能,可以在不牺牲速度或性能的情况下定义和训练最先进的模型: Keras 功能 API 和 Model Subclassing API:允许创建复杂的拓扑结构...此外,SavedModel 和 GraphDef 将向后兼容。用 1.x 版本保存的 SavedModel 格式的模型将继续在 2.x 版本中加载和执行。

    1.1K40

    用Keras搭建一个CNN | 入门教程

    2.1 编译和训练模型 在 Keras 中,编译模型就是为其设置训练过程的参数,即设置优化器、损失函数和评估指标。...通过调用 model 的 .fit() 函数来设置这些参数,例如可以设置训练的 epoch 次数,再例如直接对 trian 和 validation 调用 .repeat() 功能,并传递给 .fit(...微调模型后,训练集和验证集的评估指标随着训练epoch的变化 从图中可以看到,训练集和验证集的精度都有所提升。...$tensorflow_model_server 4.2 将 Keras 模型导出为 SavedModel 格式 为了将训练好的模型加载到 TensorFlow Serving 服务器中,首先我们需要将模型保存为...通过使用 Keras 库中的图像预处理工具,能够加载图像并将其转化为指定的大小。

    1.5K30

    Tensorflow SavedModel模型的保存与加载

    这两天搜索了不少关于Tensorflow模型保存与加载的资料,发现很多资料都是关于checkpoints模型格式的,而最新的SavedModel模型格式则资料较少,为此总结一下TensorFlow如何保存...SavedModel模型,并加载之。...要保存该模型,我们还需要对代码作一点小小的改动。 添加命名 在输入和输出Ops中添加名称,这样我们在加载时可以方便的按名称引用操作。...这里说说tag的用途吧。 一个模型可以包含不同的MetaGraphDef,什么时候需要多个MetaGraphDef呢?也许你想保存图形的CPU版本和GPU版本,或者你想区分训练和发布版本。...调用load函数后,不仅加载了计算图,还加载了训练中习得的变量值,有了这两者,我们就可以调用其进行推断新给的测试数据。 小结 将过程捋顺了之后,你会发觉保存和加载SavedModel其实很简单。

    5.5K30

    BigTransfer (BiT):计算机视觉领域最前沿迁移学习模型

    模型,并像使用 Keras 层一样,轻松使用 TensorFlow2 SavedModel。...图 1:x 轴显示每个类使用的图像数量,范围从 1 至整个数据集:在左侧图中,上方的蓝色曲线表示我们的 BiT-L 模型,而下方的曲线表示在 ImageNet (ILSVRC-2012) 上预训练的 ResNet...这类模型会保存为 SavedModel。...4) 保存微调后的模型以供日后使用 保存模型以供简化日后的操作。随后,您便可以采用与起初加载 BiT 模型时完全相同的方式,来加载已保存好的模型。...您还学习了如何加载任意一种 BiT 模型,以及如何在目标任务中对其进行微调并保存生成的模型。希望本文能对您有所帮助,并预祝您顺利完成微调!

    3.5K10

    如何用TF Serving部署TensorFlow模型

    Manager让Loader实例化新的计算图和新的权重。 此时模型的两个版本被都被加载,也就是说Manager先加载新版本模型确保其可以安全服务后,然后再卸载原版本模型。...SavedModel是TensorFlow模型的一种通用序列化格式。如果你熟悉TF,你会使用 TensorFlow Saver to persist保存模型变量。...TensorFlow Saver提供模型checkpoint磁盘文件的保存/恢复。事实上SavedModel封装了TensorFlow Saver,对于模型服务是一种标准的导出方法。...image.png 在这些场景下SavedModel允许用户以不同的配置保存计算图。本例中文件中会有三个不同的计算图,分别标签为“training”, “inference”和“mobile”。...此后调用 add_meta_graph_and_variables() 函数,构建SavedModel的protobuf对象。执行save() 方法,将模型的快照保存到包含模型变量和资产的磁盘上。

    3K20
    领券