首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

技术译文 | 数据库只追求性能是不够的!

假设您建造了一架高超音速飞机,其最高速度比普通波音 737-MAX 快 10 倍(无论是否有额外的防风靠窗座椅)。...您最好根据易用性、生态系统、更新速度或其与工作流程的集成程度来做出决策。最好的情况是,性能是完成某些任务所需时间的时间点视图;然而,最坏的情况是,它会导致您针对错误的事情进行优化。...因此,一个非常重要的变量不仅是数据库现在可以做什么,还在于未来一年能够做什么。如果数据库中的错误导致您选择竞争对手,那么在短短几周内,如果该错误已被修复,那么这将看起来是一个愚蠢的原因。...尽管许多 SQL 方言都坚持语法一致,并且应该有“一种方法”来完成所有事情,但 Snowflake 设计者的目标是让用户键入的 SQL “正常工作”。...尽管如此,大多数数据库供应商并没有认真对待它们。在 BigQuery 中,我编写了第一个 CSV 拆分器,当发现它是一个比预期更棘手的问题时,我们派了一位新的研究生工程师来解决这个问题。

13110

详细对比后,我建议这样选择云数据仓库

数据有助于公司排除决策错误。团队可以利用数据结果来决定构建哪些产品、增加哪些特性以及追求哪些增长。 然而,数据意识和洞察力驱动是有区别的。...所有的数据存储在一起可以更容易地分析数据、比较不同的变量,并生成有洞察力的可视化数据。 只使用数据库可以吗?...尽管可能会出现断电或其他故障,但数据复制和其他可靠性功能能够确保数据得到备份并快速检索。 亚马逊、谷歌、微软和 Snowflake 也提供了高度可扩展的云数据仓库。...BigQuery 的架构由以下几部分组成:Borg 是整体计算部分;Colossus 是分布式存储部分;Dremel 是执行引擎部分;Jupiter 是网络部分。 BigQuery 架构。...Google Analytics 360 收集第一方数据,并提取到 BigQuery。该仓储服务随后将机器学习模型应用于访问者的数据中,根据每个人购买的可能性向其分配一个倾向性分数。

5.7K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    构建端到端的开源现代数据平台

    尽管如此我们将在本文中讨论编排,因为最终需要将添加到平台中。 • 数据监控(可选):更多数据意味着更多潜在的数据质量问题。...BigQuery 非常适合这个要求,原因有很多,其中两个如下: • 首先它本质上是无服务器的。由于存储和计算的解耦,其背后的设计[10]提高了效率,使其成为所有类型用例的非常可靠的选择。...• 其次它是云提供商产品的一部分,因此已经与 GCP 生态系统的所有组件无缝集成。这进一步简化了我们的架构,因为它最大限度地减少了配置工作。...建立连接后,您可以试验不同的图表类型、构建仪表板,甚至可以利用内置 SQL 编辑器向您的 BigQuery 实例提交查询。...](https://github.com/GoogleCloudPlatform/bigquery-utils/tree/master/views/audit#getting-started-with-bigquery_audit_logs_v2sql

    5.5K10

    【观点】最适合数据分析师的数据库为什么不是MySQL?!

    通过对8种数据库查询错误频率的比较,Benn Stancil发现Vertica和SQL Server错误率最高,MySQL和Impala最低,如图所示: 但是,对于该结果Benn Stancil认为可能有点不严谨...,因为Impala、MySQL和Hive是开源的免费产品,而Vertica、SQL Server和BigQuery不是,后三者的用户通常是有充足分析预算的大型企业,其较高的错误率很有可能是由于使用更深入而不是语言...从图中可以看出,PostgreSQL、MySQL和Redshift的错误率较低,Impala、BigQuery和SQL Server的错误率较高。另外,和之前一样,Vertica的错误率依然最高。...该矩阵展示的是顶部数据库与左边数据库相比其错误率的差别,数值越高表现就越差。...例如,Hive和BigQuery交叉处的“20.2”表示:对使用这两款数据库的分析师,其使用Hive的错误率要比使用BigQuery高20.2。

    3K50

    要避免的 7 个常见 Google Analytics 4 个配置错误

    由于 GA4 是一个更复杂的工具,因此很容易犯错误,从而阻碍所收集数据的准确性和可靠性。...在本文中,我们将探讨容易发生的五个常见 Google Analytics 4 错误,并提供避免这些错误的实用技巧。 1....它是免费增值的,每月免费 10 GB;如果您超过该数字,它将向您收取每 GB 0.02 美元的费用。 4....尽管它提供了自动收集 Universal Analytics 事件的选项,但最好不要使用它,因为这是一个重新思考您的分析并重新设计事件收集架构以获得更好分析的机会。 6....启用 Google 信号后,GA 会使用用户 ID 跨设备跟踪用户,然后在用户在不同设备上登录其 Google 服务帐户时对其进行匹配,并且用户身份可能会暴露。

    44610

    主流云数仓性能对比分析

    而现今,公有云给这个行业带来巨大的变化,云原生的数仓层出不穷,技术迭代更新非常快,比如AWS宣称其Redshfit在过去18个月有200多项更新,每周全网同步更新2-3个功能与特性,让客户一直运行在最新版本...对比两次测试的云数仓产品,Actian是今年新加入的(其它都是老面孔),而且它是Sponsor,大概率Actian对TPC-H支撑得更好(或者说,Actian可能不能完全支持TPC-DS),以上只是个人的猜测...但就如前面所说的,它是Sponsor,并且参与了测试过程和报告的编写,这种结果也可以预期的。...最佳性能SQL的数量:横向比较22个场景,挑选出每个场景的最佳(执行时长最短)。Redshift有13条SQL执行时间最短,Synapse有8条,Snowflake只有1条,而BigQuery没有。...Snowflake和BigQuery在市场上的宣传一直都是强调其易用性和易管理性(无需DBA),这方面在本次测试中没有涉及。

    3.9K10

    干货 ▏什么数据库最适合数据分析师?

    但是,对于该结果Benn Stancil认为可能有点不严谨,因为Impala、MySQL和Hive是开源的免费产品,而Vertica、SQL Server和BigQuery不是,后三者的用户通常是有充足分析预算的大型企业...,其较高的错误率很有可能是由于使用更深入而不是语言“更难用”。...从图中可以看出,PostgreSQL、MySQL和Redshift的错误率较低,Impala、BigQuery和SQL Server的错误率较高。另外,和之前一样,Vertica的错误率依然最高。...该矩阵展示的是顶部数据库与左边数据库相比其错误率的差别,数值越高表现就越差。...例如,Hive和BigQuery交叉处的“20.2”表示:对使用这两款数据库的分析师,其使用Hive的错误率要比使用BigQuery高20.2。

    1.8K30

    什么数据库最适合数据分析师

    但是,对于该结果Benn Stancil认为可能有点不严谨,因为Impala、MySQL和Hive是开源的免费产品,而Vertica、SQL Server和BigQuery不是,后三者的用户通常是有充足分析预算的大型企业...,其较高的错误率很有可能是由于使用更深入而不是语言“更难用”。...从图中可以看出,PostgreSQL、MySQL和Redshift的错误率较低,Impala、BigQuery和SQL Server的错误率较高。另外,和之前一样,Vertica的错误率依然最高。...该矩阵展示的是顶部数据库与左边数据库相比其错误率的差别,数值越高表现就越差。...例如,Hive和BigQuery交叉处的“20.2”表示:对使用这两款数据库的分析师,其使用Hive的错误率要比使用BigQuery高20.2。

    1.3K50

    如何使用5个Python库管理大数据?

    尽管许多看门人争辩说,如果他们不使用比Python更难的语言编写代码,那么一个人是否真是软件开发人员,但它仍然无处不在。 Python被用于自动化,管理网站,分析数据和处理大数据。...随着数据的增长,我们对其进行管理的方式越来越需要调整。我们不再局限于仅使用关系型数据库。...BigQuery 谷歌BigQuery是一个非常受欢迎的企业仓库,由谷歌云平台(GCP)和Bigtable组合而成。这个云服务可以很好地处理各种大小的数据,并在几秒钟内执行复杂的查询。...关于BigQuery的另一点是,它是在Bigtable上运行的。重要的是要了解该仓库不是事务型数据库。因此,不能将其视为在线交易处理(OLTP)数据库。它是专为大数据而设计的。...该服务使用SQL和BI工具可以更快地进行查询。 Amazon Redshift和S3作为一个强大的组合来处理数据:使用S3可以将大量数据上传Redshift仓库。

    2.8K10

    使用Tensorflow和公共数据集构建预测和应用问题标签的GitHub应用程序

    这些数据存储在BigQuery中,允许通过SQL接口快速检索!获取这些数据非常经济,因为当第一次注册帐户时,Google会为您提供300美元,如果已经拥有一个,则成本非常合理。...甚至可以从BigQuery中的公共存储库中检索大量代码。...尽管示例CURL命令中说明了这一点,但它是在开始时错过的一个细节。 即使将使用Github3.py库,了解上述身份验证步骤也很有用,因为可能希望使用请求库自己实现不支持的路由。...尽管存在这些障碍,还是决定简化问题并将尽可能多的标签分为三类:功能请求,错误和使用在手动查看前200个标签后构建的启发式问题。...使用此链接查看用于对问题进行分类和重复数据删除问题的SQL查询。

    3.2K10

    评谷歌新发布的编程语言:Logica

    诞生 Logica 来源于 Yedalog(一种由 Google 较早开发的语言),它是一种类似于 Datalog 的逻辑编程语言。...Yedalog 可以参考谷歌在2015年写的论文 Yedalog: Exploring Knowledge at Scale ,其摘要放在了下面。...Logica 介绍 Logica 可被编译成 SQL 语言,并且运行在 Google BigQuery 上(当然,也可以运行在PostgreSQL和SQLite的测试环境)。...Logica code compiles to SQL and runs on Google BigQuery (with experimental support for PostgreSQL and...SQL 做不到这个。尽管开发者可以将某些重复的计算封装到视图和函数中,但是它们的语法和支持在实现中可能有所不同,但通常不存在包和导入的概念,并且不可能进行更高级的构造。”

    81650

    15 年云数据库老兵:数据库圈应告别“唯性能论”

    我们打个比方:假设你制造了一架高超声速飞机,其最高速度比普通波音 737-Max 快 10 倍。...例如,BigQuery 在基准测试中表现得很差,但许多人的实际体验是,其性能表现很出色。因为 BigQuery 没有任何障碍,而且很大程度上是自动调优,所以其在人们心中的形象非常好。...因此,一个非常重要的变量就是不仅要看数据库现在能做什么,而是看它未来一年能做什么。...如果 Snowflake 添加了增量物化视图,BigQuery 很快就会跟进。随着时间的推移,重要的性能差异不太可能持续存在。 尽管这些公司的工程师们都非常聪明,但他们都没有无法复制的神秘咒语或方法。...尽管如此,大多数数据库厂商并不重视它们。在 BigQuery 中,我编写了我们的第一个 CSV 拆分器,但当问题比预期更为棘手时,我们派了一名刚毕业的工程师来解决这个问题。

    18010

    BigQuery:云中的数据仓库

    以Hadoop和NoSQL等技术为动力的大数据正在改变企业管理其数据仓库和对分析报告进行扩展的方式。...因此,尽管我们在技术演进方面迈出了许多步伐,但面临管理大型Hadoop集群时系统管理方面的挑战时仍然存在问题,而基于云的Hadoop具有许多局限和限制,如前所述。...BigQuery将为您提供海量的数据存储以容纳您的数据集并提供强大的SQL,如Dremel语言,用于构建分析和报告。...这实际上是Dremel和BigQuery擅长的,因为它为您提供了SQL功能,例如子选择(功能),这些功能在NoSQL类型的存储引擎中通常找不到。...利用我们的实时和可批量处理ETL引擎,我们可以将快速或缓慢移动的维度数据转换为无限容量的BigQuery表格,并允许您运行实时的SQL Dremel查询,以实现可扩展的富(文本)报告(rich reporting

    5K40

    1年将超过15PB数据迁移到谷歌BigQuery,PayPal的经验有哪些可借鉴之处?

    BigQuery 使我们能够中心化我们的数据平台,而不会牺牲 SQL 访问、Spark 集成和高级 ML 训练等能力。...举个例子:尽管 PayPal 的大多数消费者在使用 SQL,但仍有许多用户在分析和机器学习用例中使用 Python、Spark、PySpark 和 R。...它的转译器让我们可以在 BigQuery 中创建 DDL,并使用该模式(schema)将 DML 和用户 SQL 从 Teradata 风味转为 BigQuery。...我们要求用户使用这个门户将他们现有或已知的 SQL 转换为与 BigQuery 兼容的 SQL,以进行测试和验证。我们还利用这一框架来转换用户的作业、Tableau 仪表板和笔记本以进行测试和验证。...数据用户现在使用 SQL,以及通过笔记本使用的 Spark 和通过 BigQuery 使用的 Google Dataproc。

    4.7K20

    7大云计算数据仓库

    关键价值/差异: •Redshift的主要区别在于,凭借其Spe ctrum功能,组织可以直接与AWS S3云数据存储服务中的数据存储连接,从而减少了启动所需的时间和成本。...(2)Google BigQuery 潜在买家的价值主张。对于希望使用标准SQL查询来分析云中的大型数据集的用户而言,BigQuery是一个合理的选择。...•通过SQL或通过开放数据库连接(ODBC)轻松查询数据的能力是BigQuery的关键价值,它使用户能够使用现有的工具和技能。...•与BigQuery ML的集成是一个关键的区别因素,它将数据仓库和机器学习(ML)的世界融合在一起。使用BigQuery ML,可以在数据仓库中的数据上训练机器学习工作负载。...关键价值/差异: •SAP Data Warehouse Cloud是该领域相对较新的参与者,它是在5月的2019 SAPPHIRE NOW会议上首次发布的。

    5.4K30

    从1到10 的高级 SQL 技巧,试试知道多少?

    这意味着 Google BigQuery MERGE 命令可让您通过更新、插入和删除 Google BigQuery 表中的数据来合并 Google BigQuery 数据。...使用 PARTITION BY 它使您有机会对所有以下事件进行分组,无论每个分区中存在多少个事件。...正则表达式 如果您需要从非结构化数据中提取某些内容(例如外汇汇率、自定义分组等),您会使用它。...希望这些来自数字营销的 SQL 用例对您有用。可以帮助您完成许多项目。 SQL 片段让我的工作变得轻松,几乎每天都在使用。此外,SQL 和现代数据仓库是数据科学的必备工具。...其强大的方言功能允许轻松建模和可视化数据。由于 SQL 是数据仓库和商业智能专业人员使用的语言,因此如果您想与他们共享数据,它是一个很好的选择。

    8310

    Thoughtworks第26期技术雷达——平台象限

    尽管 GitHub Marketplace 中的生态系统有其明显的优势,但让作为第三方的 GitHub Actions 访问你的构建流水线可能会以不安全的方式共享机密信息(我们建议遵循 GitHub 关于安全强化的建议...Google BigQuery ML 自从雷达上次收录了 Google BigQuery ML 之后,通过连接到 TensorFlow 和 Vertex AI 作为后台,BigQuery ML 添加了如深度神经网络以及...尽管它们与其他键值数据分开处理,可以单独采取预防措施或访问控制,且支持在将“机密”存储在 etcd 之前,对其进行加密,但在配置文件中,“机密”是以纯文本字段的形式保存的。...已有许多数据处理引擎支持 Apache Iceberg,包括一些 SQL 引擎,如 Dremio 和 Trino,以及(结构化)流处理引擎,如 Apache Spark 和 Apache Flink。...Cloudflare Pages 当 Cloudflare Workers 发布的时候,我们着重介绍它是一个面向边缘计算的早期函数即服务(FaaS)方案,实现方案十分有趣。

    2.8K50

    Wikipedia pageview数据获取(bigquery)

    该数据集自2015年五月启用,其具体的pageview定义为对某个网页内容的请求,会对爬虫和人类的访问量进行区分,粒度为小时级别,如下图: bigquery介绍 维基百科数据可以通过其API获取。...但是API只能拿到每个页面天级别的数据或者全部页面小时级的数据,如果需要获取每个页面小时级的数据,则需要通过其原始数据文件进行分析。...但是这部分文件的数量实在是太多了,因此使用bigquery是一个不错的选择。 bigquery请求 可以使用SQL命令对其进行请求。...由于数据在bigquery中使用分区表的形式存放,因此每次请求一年的数据。...[key] = pd.concat([baseDict[key],newDataFrame]) except KeyError: #如果该值没有找到,则会报这个错误

    2.7K10
    领券