上一节讲的是直接在创建表的时候添加条件约束,但是有时候是在表格创建完毕之后,再添加条件约束的,那么这个又该如何实现?...其实,跟上一节所写的SQL代码,很多是相同的,只是使用了修改表的ALTER关键字及添加约束的ADD CONSTRAINT关键字而已,其他大同小异。...代码如下: USE PersonInfo --使用PersonInfo数据库 GO IF EXISTS (SELECT * FROM sys.tables WHERE [name] = 'Employee...') --如果存在Employee这张表 DROP TABLE Employee --则删除 GO IF EXISTS(SELECT * FROM sys.tables WHERE [name]...= 'Person') --如果存在Person这张表 DROP TABLE Person --则删除 GO CREATE TABLE Person --创建Person(人物)表 ( --索引
主要的有Numpy、SQL alchemy、Matplot lib和openpyxl。 data frame的核心内部模型是一系列NumPy数组和pandas函数。...例如,SQL alchemy通过read_sql和to_sql函数使用;openpyxl和xlsx writer用于read_excel和to_excel函数。...不过,像Pandas这样的库提供了一个用于编译代码的python接口,并且知道如何正确使用这个接口。 向量化操作 与底层库Numpy一样,pandas执行向量化操作的效率比执行循环更高。...,可以直接在pandas中使用,也可以直接调用它的内部Numpy数组。...pandas默认为64位整数,我们可以节省一半的空间使用32位: ? 04 处理带有块的大型数据集 pandas允许按块(chunk)加载数据帧中的数据。
,类似于 Excel 表格或 SQL 表。...writer, sheet_name='Sheet1', index=False) df2.to_excel(writer, sheet_name='Sheet2', index=False) 追加数据到现有...: ['无妨', '紫霄'], 'Age': [55, 60], 'City': ['木星', '海王星'] } new_df = pd.DataFrame(new_data) # 追加新数据到现有...https://blog.csdn.net/qq_46158060']} new_df = pd.DataFrame(new_data) # 使用 openpyxl 加载现有的工作簿 wb = load_workbook...(row=1, column=1).value is None: last_row = 0 else: last_row = ws.max_row # 将新的 DataFrame 追加到现有的
# False:删除所有重复项 数据连接(concatenation) 连接是指把某行或某列追加到数据中 数据被分成了多份可以使用连接把数据拼接起来 把计算的结果追加到现有数据集,可以使用连接 import...('data/concat_3.csv') 我们可以使用concat方法将三个数据集加载到一个数据集,列名相同的直接连接到下边 在使用concat连接数据时,涉及到了参数join(join = 'inner...,通过dataframe['列名'] = ['值'] 即可 通过dataframe['列名'] = Series对象 这种方式添加一列 数据连接 merge 数据库中可以依据共有数据把两个或者多个数据表组合起来...DataFrame可以考虑使用join函数 how = ’left‘ 对应SQL中的 left outer 保留左侧表中的所有key how = ’right‘ 对应SQL中的 right outer...保留右侧表中的所有key how = 'outer' 对应SQL中的 full outer 保留左右两侧侧表中的所有key how = 'inner' 对应SQL中的 inner 只保留左右两侧都有的
SQL Alchemy连接数据库 使用 SQLAlchemy 连接数据库需要创建一个 Engine 的对象。此对象充当与特定数据库的连接的中心源,为这些数据库连接提供工厂和连接池。...在本文中,我们使用MySQL作为SQL Alchemy的后端数据库。Engine是通过create_engine()创建的。 创建数据库 SQL Alchemy不能直接创建库,只能是表级别的操作。...CREATE DATABASE IF NOT EXISTS sqlalchemy CHARATER SET UTF8; 示例代码 接下来,我们使用SQL Alchemy来连接数据库。...echo参数记录Engine发出的所有SQL到Python记录器,该记录器将写入标准输出。...此标志对于脚本中的试验非常有用;而指定future=True则是以便我们充分使用SQL Alchemy 2.0 样式用法。
DDL 做了原生支持 加强了对 python UDF 的支持 下面逐一为大家介绍 ~ Create Table Like 在生产中,用户常常有调整现有表定义的需求。...例如我们可以使用下面的语法给已有表 base_table 追加 watermark 定义: CREATE [TEMPORARY] TABLE base_table ( id BIGINT,...,只要是引用表的地方都可以追加定义。...在指定的表后面追加的动态参数会自动追加到原表定义中,是不是很方便呢 :) 由于可能对查询结果有影响,动态参数功能默认是关闭的, 使用下面的方式开启该功能: // instantiate table environment...用户可以使用流行的 python 库例如 Pandas、Numpy 来实现向量化的 python UDF。用户只需在装饰器 udf 中添加额外的参数 udf_type="pandas" 即可。
代码中充斥着大量的sql拼接,以及一些不规范的写法导致潜在的问题,需要对此类代码进行治理。...UT扫描结果 4.3 重复代码扫描 重复代码即为重复或近似的代码,在开发过程中,开发人员为了避免影响现有功能,使用复制粘贴快速完成开发任务,导致出现大量的重复代码。...重复代码详情结果 4.4 自定义规则扫描 Alchemy支持对自定义规则的扫描,通过配置自定义正则表达式和扫描范围,识别代码文件中满足配置规则的代码段,可用于扫描代码中的拼接SQL,敏感词等,并且可将不合规的代码定位到相关开发人员...Alchemy提供代码搜索功能,可以帮助开发人员根据关键词来查找收录项目中的代码使用示例,用户可以根据项目仓库、代码语言以及作者等条件进行细分查询。...在编码过程中,命名规范是一个容易被忽视的问题,使用Alchemy的变量命名功能,用户可以根据不同语言,搜索中英文关键词来获取推荐的规范命名参考,能极大地提高开发效率。
xlrd xlwt sqlalchemy:可以将关系数据库的表结构映射到对象上,然后通过处理对象来处理数据库内容; pymssql:python连接sqlserver数据库的驱动程序,也可以直接使用其连接数据库后进行读写操作...当时第一眼不知道其中的转换规律,搜索了很久,也没发现有类似问题或说明,首先肯定不是时间戳,感觉总有点关系,最后发现是天数,计算出天数计算起始日期就可以解决其他数据转变问题啦。...遍历读取Excel表数据利用了列表推导式,最后利用pandas的concat函数即可将对应数据进行合并。...= data[columns] # 第一个参数:表名 # 第二个参数:数据库连接引擎 # 第三个参数:是否存储索引 # 第四个参数:如果表存在 就追加数据...Windows下载安装配置SQL Server、SSMS,使用Python连接读写数据。
若设为True,则会在清除结果对象的现有索引后生成一组新的索引。...pandas中可使用combine_first()方法实现重叠合并数据的操作。...append Pandas可以通过append实现纵向追加: df1 = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB')) print(df1) df2...=True) 输出如下: Pandas可以通过append实现纵向追加,忽略索引: # 忽略原来的索引ignore_index=True df1.append(df2, ignore_index=...on: 参与join的列,与sql中的on参数类似。
一、连接数据库方法一(pymysql) 首先介绍连接数据库的方法一,具体代码如下: import pymysql import numpy as np import pandas as pd #36...三、把数据导入到数据库 刚刚我们已经从数据库中读取数据了,我们试下把sql取数的结果导入到新表中。...("jlkj_cs", conn, if_exists='replace', index=False) 以上代码是把date数据导入到test库的jlkj_cs表中,如果之前存在这张表,用date的数据替换这张表...四、一行一行追加写入少量数据 为了让大家更清晰地看到取数,写入数据,追加写入数据的逻辑。 这一节把前面几小节的内容进行了汇总,并增加了一行一行追加写入少量数据的代码。...('''select * from jlkj_cs''',conn) cs_add_date 得到结果: 五、批量追加写入数据 在第四小节中已经介绍了一条一条写入数据的方法,本小节介绍把数据框直接追加写入到数据库表中的方法
2.0 环境准备 我这里使用的是: python 3.10 第三方包和对应版本: pandas==1.3.5 PyMySQL==1.0.2 SQLAlchemy==1.4.30 PySimpleGUI=...如下代码: import pandas as pd ''' read_csv参数解释: 1、要读取文件路径 2、sep 指定分隔符,读取数据,使用|可以添加多种分隔符 3、header=None 没有表头...charset=utf8') return engine 然后使用pandas的to_sql函数可以很简单且快速将Dataframe格式数据存储到数据库中,感兴趣的可以看下我之前写的Python...数据存储读取,6千字搞定各种方法,里面有对比直接使用pymysql和使用pandas的to_sql存储数据的速率差别,描述不一定准确,欢迎阅读指正。...:表名 # 第二个参数:数据库连接引擎 # 第三个参数:是否存储索引 # 第四个参数:如果表存在 就追加数据 data.to_sql(table, engine, index
第4章 pandas数据获取 1.1 数据获取 1.1.1 概述 1.1.2 从CSV和TXT文件获取数据 1.1.3 读取Excel文件 1.1.4 读取json文件 1.1.5 读取sql数据 2....Pandas中使用read_excel()函数读取Excel文件中指定工作表的数据,并将数据转换成一个结构与工作表相似的DataFrame类对象。...#这里直接使用pymysql连接,echo=True,会显示在加载数据库所执行的SQL语句。...若设为True,则会在清除结果对象的现有索引后生成一组新的索引。...3.2.5 追加合并数据append Pandas可以通过append实现纵向追加: df1 = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB')) print
它类似于电子表格或SQL表或R中的data.frame。最常用的熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧中的。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...Pandas.concat 方法将行追加到数据帧。...Python 中的 Pandas 库创建一个空数据帧以及如何向其追加行和列。...我们还了解了一些 Pandas 方法、它们的语法以及它们接受的参数。这种学习对于那些开始使用 Python 中的 Pandas 库对数据帧进行操作的人来说非常有帮助。
在本次实战案例中,我们使用Python的pandas库来读取CSV文件,并将其转换为DataFrame对象,如下所示: import pandas as pd df = pd.read_csv('sales.csv...其中,我们使用pandas提供的to_sql()方法,将DataFrame对象转换为MySQL数据库中的表。 四、数据加载 数据加载是ETL过程的最后一步,它将转换后的数据加载到目标系统中。...上述代码中,我们使用pymysql库连接MySQL数据库,然后将DataFrame对象中的数据使用to_sql()方法插入到MySQL数据库中的sales_data表中。...其中,参数if_exists='append’表示如果表已经存在,则将新数据追加到已有数据的末尾,而不是覆盖原有数据。...我们使用pandas库将CSV文件读取为DataFrame对象,并对其中的销售数据进行了一些处理和转换,然后使用pymysql库将转换后的数据插入到MySQL数据库中。
:单独def的叫函数,在类里def的叫方法) 弃用的参数,即虽然某一函数/方法仍在维护和使用,但其中的某一项参数不再提倡使用,当使用该函数的相应参数时触发相关warning 结合笔者对Pandas...01 lookup函数 Pandas作为一款定位于数据分析与处理的工具库,所以在其API方面常能看到一些其他工具的影子:例如类似SQL的join函数,类似Excel中的lookup函数等。...类似于Python中列表的append函数,Pandas中的append函数是用于在现有对象的尾部追加新的元素,既可以是对Series追加Series,也可以是在DataFrame后面追加DataFrame...但同时,也与Python中列表的append函数大为不同的是: 列表中的append是inplace型的方法,即对当前对象直接追加,而返回加过为None; Pandas中的append则是不改变调用者本身...Use pandas.concat instead. 即append函数不再提倡使用,而推荐替代方法concat。
02 Pandas和Spark实现SQL对应操作 以下按照SQL执行顺序讲解SQL各关键字在Pandas和Spark中的实现,其中Pandas是Python中的数据分析工具包,而Spark作为集Java...right, # 右表 how: str = "inner", # 默认连接方式:inner on=None, # SQL中on连接一段,要求左表和右表中 公共字段 left_on...loc是用于数据读取的方法,由于其也支持传入逻辑判断条件,所以自然也可用于实现数据过滤,这也是日常使用中最为频繁一种; 通过query接口实现,提起query,首先可能想到的便是SQL中Q,实际上pandas...但在具体使用中,where也支持两种语法形式,一种是以字符串形式传入一个类SQL的条件表达式,类似于Pandas中query;另一种是显示的以各列对象执行逻辑判断,得到一组布尔结果,类似于Pandas中...纵向拼接,要求列名对齐,而append则相当于一个精简的concat实现,与Python中列表的append方法类似,用于在一个DataFrame尾部追加另一个DataFrame; Spark:Spark
Pandas是Python数据分析处理的核心第三方库,它使用二维数组形式,类似Excel表格,并封装了很多实用的函数方法,让你可以轻松地对数据集进行各种操作。...这里列举下Pandas中常用的函数和方法,方便大家查询使用。...:读取sql查询的数据(需要连接数据库),输出dataframe格式 to_sql:向数据库写入dataframe格式数据 连接 合并 重塑 merge:根据指定键关联连接多个dataframe,类似sql...中的join concat:合并多个dataframe,类似sql中的union pivot:按照指定的行列重塑表格 pivot_table:数据透视表,类似excel中的透视表 cut:将一组数据分割成离散的区间...“堆叠”为一个层次化的Series unstack: 将层次化的Series转换回数据框形式 append: 将一行或多行数据追加到数据框的末尾 分组 聚合 转换 过滤 groupby:按照指定的列或多个列对数据进行分组
Pandas作为大数据分析最流行的框架之一。用好Pandas就像大数据工程师用好SQL用好Excel一样重要。...一、一分钟入门Pandas1.1 加载数据最简单方法之一是,加载csv文件(格式类似Excel表文件),然后以多种方式对它们进行切片和切块:Pandas加载电子表格并在 Python 中以编程方式操作它...pandas 的核心是名叫DataFrame的对象类型- 本质上是一个值表,每行和每列都有一个标签。...:使用数字选择一行或多行:也可以使用列标签和行号来选择表的任何区域loc:1.3 过滤使用特定值轻松过滤行。...除了 sum(),pandas 还提供了多种聚合函数,包括mean()计算平均值、min()、max()和多个其他函数。1.6 从现有列创建新列通常在数据分析过程中,发现需要从现有列中创建新列。
用python处理结构化的CSV数据,我们自然而然会想到结构化查询语句(SQL),如果在python用sql语法来处理数据,肯定很丝滑。...第一步:安装必备的python包 pandas、pandasql。这是用pip 指定清华大学镜像秒下载秒安装。...sqldf 数据映射 操作 (不建议使用 select * ): sqldf("select * from dfdata") sqldf 数据过滤 操作: sqldf("select * from dfdata...第五步:数据结果的保存 数据保存的方式有两种:一种是追加写(覆盖写少用,说多了都是眼泪)、一种是新建文件。...#### 追加写入数据 f = open("data.csv", "a", encoding="UTF-8") f.write("\n200,bing,199,man,188") f.flush() #
上面代码已经实现将我们构造的df数据保存MySQL,现在提一些注意点 注意事项: 1、我们用的库是sqlalchemy,官方文档提到to_sql是被sqlalchemy支持 文档地址: http://pandas.pydata.org.../pandas-docs/stable/generated/pandas.DataFrame.to_sql.html ?...charset=utf8 4、create_engine是根据数据库配置信息创建连接对象 5、if_exists = 'append',追加数据 6、index = False 保存时候,不保存df的行索引...,这样刚好df的3个列和数据库的3个字段一一对应,正常保存,如果不设置为false的话,数据相当于4列,跟MySQL 3列对不上号,会报错 这里提个小问题,比如我们想在遍历的时候来一条数据,保存一条,而不是整体生成...上面提到if_exists,可以追加,用这个即可实现,包括保存csv同样也有此参数,可以参考官方文档。
领取专属 10元无门槛券
手把手带您无忧上云