内存不足:解决大模型训练时的CUDA Out of Memory错误 摘要 大家好,我是默语,擅长全栈开发、运维和人工智能技术。...今天我将和大家分享在大模型训练时如何解决CUDA Out of Memory错误的解决方案。这个问题在深度学习领域非常常见,尤其是在处理大型数据集和复杂模型时。...希望这篇文章能帮助大家更好地解决这一问题,提高模型训练的效率和稳定性。 引言 在深度学习模型的训练过程中,内存不足问题(即CUDA Out of Memory错误)常常会困扰开发者。...小结 解决大模型训练时的CUDA Out of Memory错误,需要从模型、数据和训练策略等多个方面入手。...希望大家在解决CUDA Out of Memory错误的过程中,不断学习和探索新的方法,以提升模型训练的效率和性能。
在专题上一期推送【萌芽时代】里,我们介绍了预训练语言模型思想的萌芽。今天我们推出的这篇推送, 将继续为大家介绍预训练语言模型是如何进一步发展和演进的。...本文描述了一种通用的非监督预训练方法,提升了seq2seq模型的准确性。...证明了预训练的过程直接提高了seq2seq模型的泛化能力,再次提出了预训练的重要性和通用性。...同时文中通过做对比实验确认了,对机器翻译来说,模型对泛化能力的主要提升就来自于预训练的参数特征,而对摘要提取,encoder的预训练为模型效果的巨大提升和泛化能力的提高做出了贡献。...图2为预训练seq2seq模型的结构,红色为encoder部分,蓝色为decoder部分,所有方框内参数均为语言模型预训练的,而方框外的参数为随机初始化。
翻译自:Fine-tuning a model with the Trainer API Transformers 提供了一个 Trainer 类,处理微调在数据集上提供的任何预训练模型。...必须提供的唯一参数是保存训练模型的目录以及checkpoint。 对于其余所有内容,可以保留默认值,这对于基本的微调应该非常有效。...该函数必须采用 EvalPrediction 对象(这是一个带有预测字段和 label_ids 字段的命名元组),并将返回一个将字符串映射到浮点数的字典(字符串是返回的指标的名称,浮点数是它们的值)。...BERT 论文中的表格报告了基本模型的 F1 分数为 88.9,这是非case的模型,而我们目前使用的是case的模型,这解释了更好的结果。...TrainingArguments,其评估策略设置为“epoch”和一个新模型 - 否则,我们将继续训练已经训练过的模型。
针对任何领域微调预训练 NLP 模型的分步指南 简介 在当今世界,预训练 NLP 模型的可用性极大地简化了使用深度学习技术对文本数据的解释。...然而,虽然这些模型在一般任务中表现出色,但它们往往缺乏对特定领域的适应性。本综合指南[1]旨在引导您完成微调预训练 NLP 模型的过程,以提高特定领域的性能。...动机 尽管 BERT 和通用句子编码器 (USE) 等预训练 NLP 模型可以有效捕获语言的复杂性,但由于训练数据集的范围不同,它们在特定领域应用中的性能可能会受到限制。...不幸的是,通用模型常常忽略这些微妙的关系。 下表展示了从基本多语言 USE 模型获得的相似性的差异: 为了解决这个问题,我们可以使用高质量的、特定领域的数据集来微调预训练的模型。...数据概览 为了使用此方法对预训练的 NLP 模型进行微调,训练数据应由文本字符串对组成,并附有它们之间的相似度分数。
所以,我当时写的nlp预训练模型笔记中,称赞bert为集大成者。觉得在预训练这块,像他这样突的突破性进展,短期内是不会有了。(GPT当时做的其实挺不错的,但开源速度太慢了!)...5.1 多语言 基于多语言的预训练模型,跟单语言的区别在于,学习任务的设计,对平行语料的利用,以及生成式预训练模型。...但这也说明预训练模型有over-parameterized的问题。 「模型剪枝」——预训练模型会不会有一些useless的部分呢?...解释和理论分析 这一块其实蛮有意思的,四个部分。预训练模型学了什么,预训练模型的鲁棒性,structural sparsity/modularity,以及预训练模型的理论分析。...以及low levels of pruning也不会影响下游task的效果。 7.3 预训练模型的理论分析 为何预训练有效果?
预训练模型在不同深度学习框架中的转换是一种常见的任务。今天刚好DPN预训练模型转换问题,顺手将这个过程记录一下。...torch_tensor.std()) model.load_state_dict(remapped_state) return model 从中可以看出,其转换步骤如下: (1)创建pytorch的网络结构模型...,设为model (2)利用mxnet来读取其存储的预训练模型,得到mxnet_weights; (3)遍历加载后模型mxnet_weights的state_dict().keys (4)对一些指定的key...值,需要进行相应的处理和转换 (5)对修改键名之后的key利用numpy之间的转换来实现加载。...为了实现上述转换,首先pip安装mxnet,现在新版的mxnet安装还是非常方便的。 ? 第二步,运行转换程序,实现预训练模型的转换。 ? 可以看到在相当的文件夹下已经出现了转换后的模型。
特别是当你的模型非常大时,内存不足会引发此错误。 如何解决 CUDNN_STATUS_NOT_INITIALIZED 错误?️ 1....在“系统变量”中添加CUDA_PATH和CUDNN_PATH,并将路径添加到Path变量中。 4. 检查GPU内存使用情况 在训练模型前,确保GPU有足够的内存。...你可以使用 nvidia-smi 命令来检查GPU的内存使用情况。 nvidia-smi 如果发现GPU内存不足,可以尝试减少模型的批量大小,或者释放其他占用GPU的进程。...A: 你可以通过运行简单的TensorFlow或PyTorch代码来检查cuDNN是否正确初始化。如果模型训练能够正常进行,说明cuDNN已正确初始化。...小结 RuntimeError: cuDNN error: CUDNN_STATUS_NOT_INITIALIZED 通常由CUDA和cuDNN版本不匹配、驱动程序问题、环境变量配置错误或内存不足引起
该模型结合双向和自回归 Transformer 进行模型预训练,在一些自然语言处理任务上取得了SOTA性能表现。...近日,Facebook 发表论文,提出一种为预训练序列到序列模型而设计的去噪自编码器 BART。BART 通过以下步骤训练得到:1)使用任意噪声函数破坏文本;2)学习模型来重建原始文本。...总之,BART 相比同等规模的 BERT 模型大约多出 10% 的参数。 预训练 BART BART 是通过破坏文档再优化重建损失(即解码器输出和原始文档之间的交叉熵)训练得到的。...新编码器可使用不同的词汇。 结果 ? 表 1:预训练目标对比。所有模型的训练数据都是书籍和维基百科数据。 ? 表 2:大模型在 SQuAD 和 GLUE 任务上的结果。...BART 使用单语英文预训练,性能优于强大的回译基线模型。 The End
引言 这篇文章就是当下很火的用预训练CNN刷爆Transformer的文章,LeCun对这篇文章做出了很有深意的评论:"Hmmm"。...本文在预训练微调范式下对基于卷积的Seq2Seq模型进行了全面的实证评估。...本文发现: (1)预训练过程对卷积模型的帮助与对Transformer的帮助一样大; (2)预训练的卷积模型在模型质量和训练速度方面在某些场景中是有竞争力的替代方案。...卷机模型 (2)卷积模型如果通过预训练或者其他方式是否能够和Transformer模型对抗,什么情况下卷积模型表现好?...(3)使用预训练的卷积模型比预训练的Transformer有什么好 处(如果有的话)?卷积比基于自注意的Transformer更快吗?
设置哪几种预训练任务比较合理? 1 预训练介绍 本节将向大家介绍什么是模型的预训练。对于一般的模型,如果我们有充足的数据和标签,我们可以通过有监督学习得到非常好的结果。...2 GCN 预训练模型框架介绍 如果我们想要利用预训练增强模型的效果,就要借助预训练为节点发掘除了节点自身embedding之外的其他特征,在图数据集上,节点所处的图结构特征很重要,因此本论文中使用三种不同的学习任务以学习图中节点的图结构特征...中一些已存在的边以获得带有噪声的图结构 ;然后, GNN 模型使用 作为输入,记作编码器 ,学习到的表征信息输入到 NTN 模型中,NTN 模型是一个解码器,记作 ,以一对节点的embedding...2.2 应用于下游任务 通过上面所提到的带有 、 和 的三种任务上的预训练能够捕GNN来为图中节点生成结构相关的通用表征。...本节小结 在此做一个小结,利用 2.1 节所提到方法预训练模型,使预训练模型能够从局部到全局上捕获图结构信息的不同属性,然后将预训练模型在特定的任务中做微调,最终应用于该特定任务中。
本文特别介绍将于12月10日举行的【预训练大模型】技术论坛。 近年来,大规模预训练模型以强大的研究基础性、技术通用性、应用泛化性,得到产学研各方的高度关注。...阿里巴巴达摩院研发了超大规模中文多模态预训练模型体系“通义”,并陆续推出了百亿、千亿、万亿和十万亿参数规模的预训练模型,实现了高效低碳的预训练,推动预训练基础模型的产业化应用。...,低成本高效率平台化的使用预训练大模型以使其发挥出更大的应用价值等。...本次报告将围绕阿里巴巴预训练模型体系展开报告。 东昱晓 清华大学计算机系 助理教授 研究方向为数据挖掘、图机器学习和预训练模型。...报告题目:GLM-130B: 开源的中英双语千亿预训练模型及其低资源应用 GLM-130B 是一个开源开放的中英双语双向稠密预训练模型,拥有 1300 亿参数,模型架构采用通用语言模型GLM。
文章转自Hugging face预训练模型 Hugging face简介 Hugging face是一个专注于NLP的公司,拥有一个开源的预训练模型库Transformers ,里面囊括了非常多的模型例如...BERT GPT 等 模型库 官网的模型库的地址如下:https://huggingface.co/models ?...使用Windows模型保存的路径在C:\Users\[用户名]\.cache\torch\transformers\目录下,根据模型的不同下载的东西也不相同 使用Linux模型保存的路径在~/.cache...存在的问题 这些前提是你的电脑有网络可以直接使用代码下载相应的模型文件,但是问题是有些机器是没有外网连接权限或者下载速度非常慢。...这时候就需要把模型文件下载后在导入代码中,还是以刚才的 hfl/chinese-xlnet-base模型为例,直接在官网搜索模型,点击进入模型的详情界面 ?
在前面的文章【Tensorflow加载预训练模型和保存模型】中介绍了如何保存训练好的模型,已经将预训练好的模型参数加载到当前网络。这些属于常规操作,即预训练的模型与当前网络结构的命名完全一致。...本文介绍一些不常规的操作: 如何只加载部分参数? 如何从两个模型中加载不同部分参数? 当预训练的模型的命名与当前定义的网络中的参数命名不一致时该怎么办?..."conv_1" in v.name] saver = tf.train.Saver(var_list=vars) saver.restore(sess, ckpt_path) 2 从两个预训练模型中加载不同部分参数...如果需要从两个不同的预训练模型中加载不同部分参数,例如,网络中的前半部分用一个预训练模型参数,后半部分用另一个预训练模型中的参数,示例代码如下: import tensorflow as tf def...举个例子,例如,预训练的模型所有的参数有个前缀name_1,现在定义的网络结构中的参数以name_2作为前缀。
阶段2:监督学习(Supervised Learning):监督学习是机器学习中最常见的一种方法,其中模型通过带有标签的训练数据进行学习,目的是从输入数据和其对应的标签中找到映射关系。...大模型预训练技术 大模型预训练简介 预训练是指在模型的初始阶段,使用大量数据对模型进行训练,以便让模型学习到通用的特征和知识。这些特征和知识可以是语言模型中的词嵌入,或者是图像识别模型中的视觉模式。...大模型预训练需要从海量的文本数据中学习到充分的知识存储在其模型参数中。 在大模型生成文本之前,它必须先学习语言的工作原理,这是通过预训练实现的,是一项计算密集型任务。...大模型预训练技术-数据准备 现有的大语言模型主要将各种公开的文本数据进行混合作为预训练语料,如图所示。...主要目标是防止在长时间序列任务中发生水平遗忘 大模型预训练技术-模型架构 预训练的架构:大语言模型LLM预训练采用了 Transformer 模型的解码器部分,由于没有编码器部分,大语言模型去掉了中间的与编码器交互的多头交叉注意力层
毕竟,有一个经过大量数据和计算训练的模型,你为什么不利用呢? 预训练模型万岁!...利用预训练的模型有几个重要的好处: 合并超级简单 快速实现稳定(相同或更好)的模型性能 不需要太多的标签数据 迁移学习、预测和特征提取的通用用例 NLP领域的进步也鼓励使用预训练的语言模型,如GPT和GPT...利用预训练模型的一种常见技术是特征提取,在此过程中检索由预训练模型生成的中间表示,并将这些表示用作新模型的输入。通常假定这些最终的全连接层得到的是信息与解决新任务相关的。...每个人都参与其中 每一个主流框架,如Tensorflow,Keras,PyTorch,MXNet等,都提供了预先训练好的模型,如Inception V3,ResNet,AlexNet等,带有权重: Keras...在实践中,你应该保持预训练的参数不变(即,使用预训练好的模型作为特征提取器),或者用一个相当小的学习率来调整它们,以便不忘记原始模型中的所有内容。
01 在图上做预训练模型同传统的transformer有什么区别 在进行对论文的梳理之前,应当先思索一个问题:在图上做预训练模型,和常见的基于自然语言文本去做,二者之间有什么区别呢?...所以一些pretrian模型不约而同地依据图上需要把握的信息的特点设定了适应于图上的预训练任务中。 1.3 最后一个问题:在图上做预训练模型,主要改进点在哪里?...依照目前的论文来看,主要包括两部分: 1. 模型架构上。也就是说,使用一种固定的预训练GNN结构去处理一类的图。这一部分的工作比较符合NLP里对transformer的改进。 2. 训练任务上。...下图展示了这样一种预训练模型的用途——相当于一种上游的预训练,以获得一个相对而言更好的起始模型结果。 ?...作者同样给出了是否使用这类预训练方式时,产生的增益可以有多少: ? 总结一下上述两篇论文的工作,可以发现:他们都是设计了一些新的训练任务,而非提出了一种新的GNN模型。
不需要大规模的预训练,从零训练一个大模型也能取得SOTA的效果,源码在yaoxingcheng/TLM Introduction 作者首先指出,从零开始对RoBERTa-Large进行预训练,需要4.36...一般的组织根本不可能有这么大的算力,我们顶多是拿别预训练好的模型在自己的下游任务上微调,整个过程称为Pretraining-Finetuning TLM: Task-Driven Language Modeling...但这就违背了他们的初衷,他们希望整个过程要尽可能的简单、效率高,而且使用一个预训练好的BERT模型来提取向量,似乎有些作弊的感觉,因为他们的原意就是不使用预训练模型 Joint Training 给定内部和外部数据...当然了,TLM也适用于其他的模型架构以及非分类任务 如果只看上面的损失,实际上就是我们常见的多任务,但接下来才是重点,作者在训练的时候分了两个阶段。...Result 从结果上来看这种方法简直是太强了,和BERT以及RoBERTa打得有来有回,浮点计算量、数据量以及模型的参数量都比BERT或RoBERTa小很多,最关键的是他们是预训练过的,而TLM是从零开始训练的
近段时间来,我们在工作和研究中使用BERT等来进行模型训练或业务开发变得越来越普遍。使用预训练模型大大提升了在相关任务上的效果,同时降低了训练的难度。...所以,我想趁这个机会,来通过阅读这些文章,梳理和分享一下我眼中的预训练语言模型的演进,同时总结一些在使用预训练模型时的心得和总结,希望能给NLP的初学者们一点帮助和启示,同时也希望抛砖引玉,能吸引更多的...萌芽时代(2015-2016) 这篇文章起名为萌芽时代,一方面指的是我们今天将要介绍的两篇文章是NLP预训练语言模型刚刚如雨后春笋般冒出萌芽的阶段,他们开创了预训练语言模型的先河,并且与当时流行的词嵌入方法相承接...预训练模型其实在图像中早已被应用,而预训练语言模型的概念于2015 年被认为首次提出(Dai & Le,2015,Semi-supervised Sequence Learning)。...从此以后,预训练语言模型渐渐步入了人们的视野,更在之后由一系列更优秀更强大的模型发扬光大。
目前在NLP领域,出彩的预训练模型的新工作,几乎都是基于BERT的改进,前面我们就介绍了XLNET。今天我来介绍一个更新的工作,相比于BERT,它更轻量,效果也要好。...作者&编辑 | 小Dream哥 1 预训练模型进展 2018年底,BERT横空出世之后,预训练模型开始走进NLP舞台的中央,吸引了业内所有人的关注。...之后,各种预训练模型开始不断的刷新NLP领域的SOTA榜单,比较有影响力的包括,GPT-2.0,XLNET,RoBERTa等。...大体来说,上述预训练模型确实都基于BERT了做了一些改进,在模型结构、训练模式等方面都有一些创新。但是大部分的预训练模型也有一个共通的“特点”,即模型相对“笨重”,预训练成本高。...ALBERT的作者就是基于这样的背景,提出ALBERT这个模型的。其试图解决大部分预训练模型训练成本高,参数量巨大的问题。
本文对预训练模型在召回(retrieval), 排序(re-ranking),以及其他部分的应用做一个总结,参考学长们的综述:Pre-training Methods in Information Retrieval...由于待训练的模型参数很多(增加model capacity),而专门针对检索任务的有标注数据集较难获取,所以要使用预训练模型。 2....预训练模型在倒排索引中的应用 基于倒排索引的召回方法仍是在第一步召回中必不可少的,因为在第一步召回的时候我们面对的是海量的文档库,基于exact-match召回速度很快。...但是,其模型capacity不足,所以可以用预训练模型来对其进行模型增强。...对,对于一个document,先得到其门控向量G, 然后去和实际的query进行对比: T为真实query的bag of words 下一篇将介绍预训练模型在深度召回和精排中的应用
领取专属 10元无门槛券
手把手带您无忧上云