首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    《搜索和推荐中的深度匹配》——2.5 延伸阅读

    Query重构是解决搜索中查询文档不匹配的另一种方法,即将Query转换为另一个可以进行更好匹配的Query。Query转换包括Query的拼写错误更正。例如,【1】提出了一种源渠道模型,【2】 提出了一种用于该任务的判别方法。Query转换还包括Query分段【3】【4】【5】。受统计机器翻译 (SMT) 的启发,研究人员还考虑利用翻译技术来处理Query文档不匹配问题,假设Query使用一种语言而文档使用另一种语言。【6】利用基于单词的翻译模型来执行任务。【7】 提出使用基于短语的翻译模型来捕获查询中单词和文档标题之间的依赖关系。主题模型也可用于解决不匹配问题。一种简单而有效的方法是使用term匹配分数和主题匹配分数的线性组合【8】。概率主题模型也用于平滑文档语言模型(或Query语言模型)【9】【10】。 【11】对搜索中语义匹配的传统机器学习方法进行了全面调查。

    02

    【专知荟萃12】信息检索 Information Retrieval 知识资料全集(入门/进阶/综述/代码/专家,附PDF下载)

    【导读】主题荟萃知识是专知的核心功能之一,为用户提供AI领域系统性的知识学习服务。主题荟萃为用户提供全网关于该主题的精华(Awesome)知识资料收录整理,使得AI从业者便捷学习和解决工作问题!在专知人工智能主题知识树基础上,主题荟萃由专业人工编辑和算法工具辅助协作完成,并保持动态更新!另外欢迎对此创作主题荟萃感兴趣的同学,请加入我们专知AI创作者计划,共创共赢! 今天专知为大家呈送第十二篇专知主题荟萃-信息检索知识资料大全集荟萃 (入门/进阶/综述/代码/专家等),请大家查看!专知访问www.zhuanz

    05

    服装关键点检测算法(CNN/STN)含(4点、6点以及8点)

    最近几年服饰关键点检测分析引起了人们的广泛关注。以前的具有代表性的工作是服装关键点的检测或人体关节。这项工作提出预测关键位置在时尚物品上定义的点,例如领口的角落,下摆和袖口。然而,由于背景杂乱,人体的姿势和尺度,检测时尚义务上的关键点是具有挑战性的,为了消除上述变化,以前的工作通常是假设在训练和测试中提供的边界的边框作为附加条件,然而这在实践中是不适用的,本项目涉及的是无约束的服装的关键点的检测,无论是训练还是测试所涉及到的是没有提供服饰的边界框,对此我们提出了一种新的网络结构, 此结构主要包含两个部分,首先使用Resnet进行特征提取,然后利用STN空间转换网络除去背景的干扰,最后使用全连接网络进行对关键点的位置和可见性进行预测。

    03
    领券