沃趣科技作为服务国内B端企业的数据库产品和解决方案的国产厂商,多年与传统企业打交道,深知传统企业目前正面临着互联网应用和数字化全面转型的挑战。我们了解到CIO眼里最重要的规划之一,就是如何根据企业自身的业务特点打造合适的私有云平台,来适应日新月异的应用场景变化,快速推出满足市场需求的应用。
作者 | 潘娟 伴随着互联网应用场景逐渐深入到生活的各个角落,为了确保前端用户的使用体验,对互联网产品的后端架构性能提出了更高的需求。如今,开发以及运维人员正在将工作重心和优化重点放在了后端基础设施的可用性、一致性、扩展性、弹性以及全面自动化管理等能够提升效率的技术能力层面。 1 背景:Kubernetes 环境中的微服务与数据库 应用部署的变化 一方面,在处处充斥着大数据以及高并发场景的今天,后台技术人员往往会花费更多精力在解决『大规模业务数据的存储与应用』等问题上,以确保数据库等基础设施能够
A云Polardb-x 1.0现已全面升级为Polardb-x 2.0,但Polardb-X 1.0有其自有特色,仍然有很多企业在使用Polardb-X 1.0方案。那么,当这些企业想将业务系统迁移至腾讯云时,该如何进行数据库选型?怎么样进行数据同步?其中又会涉及到哪些问题呢?
我们都知道,随着业务量的增长,数据量也会随之增加,这个时候就需要关注业务大表,因为大表会影响查询性能,DDL变更时间很长,影响业务的可用性,同时导致从库延迟很大,如果业务做了读写分离,导致用户重复操作产生脏数据,例如重复下单。
笔者刚开始进入公司的时候,主要是忙于分布式MySQL系统----MyShard的构建,公司使用了大量的IDC机房,基于这种网络特点,MyShard设计当初完全是为了是一套支持Multi-Master操作的高可用性的分布式数据库,可以在多个机房中部署的业务上提供快速的写操作,实现了分布式高可用存储能力。
一 、引子 笔者刚开始进入公司的时候,主要是忙于分布式MySQL系统----MyShard的构建,公司使用了大量的IDC机房,基于这种网络特点,MyShard设计当初完全是为了是一套支持Multi-Master操作的高可用性的分布式数据库,可以在多个机房中部署的业务上提供快速的写操作,实现了分布式高可用存储能力。 在业务增长期,MyShard解决了公司的很多大型的数据库存储业务,随着公司业务逐渐稳定下来,分布式存储需求越来越少。而公司却有大量的小业务以及不断尝试的各种新业务,需要越来越多的小数据量的数据库存
目前云平台逐渐火热起来,国内如:阿里云、腾讯云、华为云等平台,国外如:AWS、Azure、Google GCP等平台,都有不少用户,并在持续的增加中。
OLAP 是一个很卷的赛道,创业公司也众多。在本文中,笔者基于 10+ 年的大数据与数据仓库的工作经验,就目前的主流趋势:离在线一体化、引擎一体化、云原生化等写一些思考,抛砖引玉,希望能与各位共同探讨。
在基于 Kubernetes 和 Docker 构建的私有 RDS 中,普遍采用了计算存储分离架构。该架构优势明显, 但对于数据库类 Latency Sensitive 应用而言,IO 性能问题无法回
分布式数据库已经流行好多年,产品非常众多,其中分布式数据库中间件使用场景最广。本文主要是总结如何基于分布式数据库中间件做数据库架构设计,以充分发挥它的分布式能力。各个中间件产品功能核心原理相同,细节上有些区别。这里仅以阿里云的DRDS为例分析,在产品架构、功能、成熟度和市场占有率上,它都比同行产品有优势。
摘要 在基于 Kubernetes 和 Docker 构建的私有 RDS 中,普遍采用了计算存储分离架构。该架构优势明显, 但对于数据库类 Latency Sensitive 应用而言,IO 性能问题
作者简介:崔秋,PingCAP 联合创始人,重度开源爱好者,曾任职于搜狗、豌豆荚,长期从事广告系统基础组件相关的研究,现主要从事开源 NewSQL 数据库 TiDB/TiKV 相关的设计和研发工作。
标题中的DBA其实包含两层含义:Database Architect 与 Database Administrator,我在这里都简称DBA了。
前文数据库容器化|未来已来我们介绍了基于Kubernetes实现的下一代私有 RDS。其中,调度策略是具体实现时至关重要的一环,它关系到RDS 集群的服务质量和部署密度。那么,RDS 需要怎样的调度策略呢?本文通过数据库的视角结合Kubernetes的源码,分享一下我的理解。
沃趣科技 熊中哲·联合创始人/产品研发团队总监 前文我们介绍了基于 Kubernetes 实现的下一代私有 RDS. 其中, 调度策略是具体实现时至关重要的一环, 它关系到 RDS 集群的服务质量和部
导 语 前文数据库容器化|未来已来我们介绍了基于Kubernetes实现的下一代私有 RDS。其中,调度策略是具体实现时至关重要的一环,它关系到RDS 集群的服务质量和部署密度。那么,RDS 需要怎样的调度策略呢?本文通过数据库的视角结合Kubernetes的源码,分享一下我的理解。 It was the best of times, it was the worst of times。 —by Dickens. 人类从爬行到直立用了几百万年,但是我
在基于 Kubernetes 和 Docker 构建的私有 RDS 中, 普遍采用了计算存储分离架构. 该架构优势明显, 但对于数据库类 Latency Sensitive 应用而言, IO 性能问题无法回避, 下面分享一下我们针对 MySQL 做的优化以及优化后的收益.
以容器、Kubernetes、微服务为代表的云原生技术作为一套生产于云时代的技术体系充分沿用云的设计理念,使得应用开发者充分享受云计算带来的分布式、可扩展、高弹性等技术红利,高效的敏捷开发,大幅降低企业试错成本,提升应用的部署和迭代效率。云原生产品也显著降低了云计算的使用门槛,让企业和开发者更加聚焦业务创新。
本文根据洪斌10月27日在「3306π」技术 Meetup - 武汉站现场演讲内容整理而成。
是允许我们处理客户端数据的一系列服务的统称, 主要可以为公司节约计算机的硬件成本.
主从模式对于写少读多的场景确实非常大的优势,但是总会写操作达到瓶颈的时候,导致性能提不上去。
从传统关系型数据库到云数据库,数据库在不断演进。与此同时,它也发挥着越来越重要的作用。从云计算、新媒体、音视频、云游戏到移动 App,几乎各行各业都离不开数据库。一方面,数据库作为 IT 基础设施的关键一环,对企业业务的发展起着支撑作用;另一方面,数字化在经济社会中不断深入,数据成为核心要素,围绕数据的生产、存储和消费均依赖数据库。
但是这篇文章主要讲的是缓存数据库读写顺序问题,并没考虑实际搭建场景,这篇文章面向实际开发应用
随着各行各业电子信息化的不断加深,线上交易数据保持了长时间高速增长的态势,对数据存储的需求越来越大,数据库管理系统(DBMS)面临越来越大的性能、空间和稳定性压力。在此过程中,得利于计算&存储&网络等硬件领域的不断进步,业界流行的数据库管理系统逐步从单机架构向分布式架构演变。笔者希冀从梳理数据库管理系统所面临的一个又一个实际挑战及业界所提出的诸多解决方案的过程中,发现片缕灵感以指引未来的数据库开发工作。
本文主要描述ThinkSNS Plus服务端系统性能、服务端高性能部署方案及优化措施、服务端系统持续优化及升级策略。本文未涉及前端(PC站点、H5站点、Android、IOS)性能方案。
本次分享将介绍Pigsty:PostgreSQL RDS的Me-Better开源替代。Pigsty是如何从可观测性,可靠性,可维护性,可用性,可扩展性与安全性六个维度上,让裸奔的PostgreSQL内核成为全盛状态的六边形战士,以云数据库5%~30%的成本,提供更好的生产级关系型数据库服务(RDS)。
随着交流机会的增多(集中在金融行业,规模都在各自领域数一数二),发现大家对 Docker + Kubernetes 的接受程度超乎想象, 并极有兴趣将这套架构应用到 RDS 领域。数据库服务的需求可以简化为:
随着交流机会的增多(集中在金融行业, 规模都在各自领域数一数二), 发现大家对 Docker + Kubernetes 的接受程度超乎想象, 并极有兴趣将这套架构应用到 RDS 领域. 数据库服务的需求可以简化为:
Ping++ 是国内领先的支付解决方案 SaaS 服务商。自 2014 年正式推出聚合支付产品,Ping++ 便凭借“7行代码接入支付”的极致产品体验获得了广大企业客户的认可。
但是公司业务发展的速度实在太快,来了一个厂商或者应用就要求我们上线一个RDS实例,并且要求实例具备高可用、可扩展能力,随时上线或者下线,领导又要求提高物理硬件资源利用率。业务部门整天催着我们快速提供数据库服务,数据库实例多了后,运维难度和复杂度直线上升。公司IT发展战略朝着微服务和互联网化全面改造,DevOps建设又旨在打通运维和开发部门壁垒,作为DBA运维人员该如何适应这种转型?
前面讲了 Mycat 是一个开源的分布式数据库系统,但是由于真正的数据库需要存储引擎,而 Mycat 并没有存储引擎,所以并不是完全意义的分布式数据库系统。
在实施微服务的过程中,不免要面临服务的聚合与拆分,当后端服务的拆分相对比较频繁的时候,作为手机 App 来讲,往往需要一个统一的入口,将不同的请求路由到不同的服务,无论后面如何拆分与聚合,对于手机端来讲都是透明的。
《云上应用技术架构》是一本全面详尽的专业手册,旨在为应用运维人员、平台架构师和解决方案架构师提供在云环境中构建、管理和优化应用程序的必备知识和技能。本书精心设计了丰富的内容体系,涵盖了从基础的云架构设计,到复杂的数据架构和安全性设计等多个关键主题。
为方便阅读、重点呈现,本文对各板块内容进行了精简,需阅读完整版可点击文末【阅读原文】或登录云盘下载:https://pan.baidu.com/s/1h8plZz-amxxOMMWTL2eicQ(提取码:dwqg)
ElasticSearch 是一款强大的分布式搜索和分析引擎,支持多种方式同步数据和日志。下面介绍几种常见的同步方式:
日前,第11届PostgreSQL中国技术大会圆满落幕,大会上腾讯云多位顶级技术达人携手亮相,分别对腾讯云PostgreSQL系列产品技术亮点和创新实践案例进行了深入解读,针对TDSQL-C PostreSQL高可用特性、TDSQL-A发展历程、技术架构等做出了详细介绍。 会上腾讯云数据库开源产品TDSQL PostgreSQL版(开源代号Tbase)再次公布升级:分区表能力增强,分区剪枝性能提升30%,分布区表关联查询性能(Join)提升超十倍。此外,异地多活易用性增强、分布式死锁自动检测并解锁功能上线
Mycat中的概念 数据库中间件 前面讲了Mycat是一个开源的分布式数据库系统,但是由于真正的数据库需要存储引擎,而Mycat并没有存储引擎,所以并不是 完全意义的分布式数据库系统。 那么Mycat是什么?Mycat是数据库中间件,就是介于数据库与应用之间,进行数据处理与交互的中间服务。由于前面讲的对数 据进行分片处理之后,从原有的一个库,被切分为多个分片数据库,所有的分片数据库集群构成了整个完整的数据库存储。 如上图所表示,数据被分到多个分片数据库后,应用如果需要读取数据,就要需要处理多个数据源的数据。如果没有数据库中间 件,那么应用将直接面对分片集群,数据源切换、事务处理、数据聚合都需要应用直接处理,原本该是专注于业务的应用,将会 花大量的工作来处理分片后的问题,最重要的是每个应用处理将是完全的重复造轮子。 所以有了数据库中间件,应用只需要集中与业务处理,大量的通用的数据聚合,事务,数据源切换都由中间件来处理,中间件的 性能与处理能力将直接决定应用的读写性能,所以一款好的数据库中间件至关重要。 逻辑库(schema) 逻辑库(schema) 前面一节讲了数据库中间件,通常对实际应用来说,并不需要知道中间件的存在,业务开发人员只需要知道数据库的概念,所以 数据库中间件可以被看做是一个或多个数据库集群构成的逻辑库。 在云计算时代,数据库中间件可以以多租户的形式给一个或多个应用提供服务,每个应用访问的可能是一个独立或者是共享的物 理库,常见的如阿里云数据库服务器RDS。 逻辑表(table) 逻辑表 既然有逻辑库,那么就会有逻辑表,分布式数据库中,对应用来说,读写数据的表就是逻辑表。逻辑表,可以是数据切分后,分 布在一个或多个分片库中,也可以不做数据切分,不分片,只有一个表构成。 分片表 分片表,是指那些原有的很大数据的表,需要切分到多个数据库的表,这样,每个分片都有一部分数据,所有分片构成了完整的 数据。 例如在mycat配置中的t_node就属于分片表,数据按照规则被分到dn1,dn2两个分片节点(dataNode)上。
“ Hypervisor、KVM、OpenStack、Docker、K8S...这些热词相信你或多或少的听到过,这些都属于云计算范畴。今天我将从宏观的角度看这几个名词和它们之间的关系,简单分享企业云上常见架构。让我们开始吧!”
如今贵州地区,市民只需打开手机APP,就能够快速便捷地享受到诸如路况查询、违章处理、罚款缴纳等一系列自助式服务,免去了往来于家与交警队之间的奔波之苦。在其背后,贵州省“公安交通综合业务平台”发挥了巨大作用。依托“公安交通综合业务平台”打造的智慧交通服务,是贵州信息化云建设的重要成果之一。 根据Gartner报告,2016年全球云服务市场规模达到654.8亿美元,预计从现在到2020年将持续平稳增长,2020年将达到1435.3亿美元,年复合增长率达21.7%。 而我国云计算整体市场增长态势,高于全球平均水平
题记:如今贵州地区,市民只需打开手机APP,就能够快速便捷地享受到诸如路况查询、违章处理、罚款缴纳等一系列自助式服务,免去了往来于家与交警队之间的奔波之苦。在其背后,贵州省“公安交通综合业务平台”发挥了巨大作用。依托“公安交通综合业务平台”打造的智慧交通服务,是贵州信息化云建设的重要成果之一。
👆点击“博文视点Broadview”,获取更多书讯 《云数据库架构》一书全面介绍了主流数据库的技术特点,结合业务场景讲解了数据库技术选型和数据库架构的最佳实践。下面我们摘取本书第1章中对阿里云RDS MySQL三节点企业版的重点内容,让读者先睹为快。 数据库的高可用是个悠久的话题,目前以最常见的主备模式为例, 它主要有异步和半同步两种方式,但这两种方式都有各自的缺陷。 异步在主库宕机后,最后更新的记录有可能没有推送到从库,从而引发数据丢失。 半同步虽然会保证最少有一个从库接收到binlog,但同样有丢
在AWS 上的生产环境性能分析案例一文中,记录了我对客户应用生产环境的一次性能分析。接下来,我们要根据所发现的性能问题进行架构优化,以提升可用性和性能。同时,这篇文章也总结了应用迁移到云上的套路。
作者:刘超,毕业于上海交通大学,15年云计算领域研发及架构经验,先后在EMC,CCTV证券资讯频道,HP,华为,网易从事云计算和大数据架构工作。
作者简介 Roy,携程软件技术专家,负责MySQL双向同步DRC和数据库访问中间件DAL的开发演进,对分布式系统高可用设计、分布式存储,数据一致性领域感兴趣。 一、前言 在携程国际化战略背景下,海外业务将成为新的发力点,为了保证用户高品质的服务体验,底层数据势必需要就近服务业务应用。一套标准且普适的数据复制解决方案能够提升业务决策效率,助力业务更快地触达目标用户。 DRC (Data Replicate Center) 作为携程内部数据库上云标准解决方案,支撑了包括但不限于即时通讯、用户账号、IBU在内的
作为云原生技术先驱,腾讯云数据库内核团队致力于不断提升产品的可用性、可靠性、性能和可扩展性,为用户提供更加极致的体验。为帮助用户了解极致体验背后的关键技术点,本期带来腾讯云数据库专家工程师王鲁俊给大家分享的腾讯云原生数据库TDSQL-C的架构探索和实践,内容主要分为四个部分: 本次分享主要分为四个部分: 第一部分,介绍腾讯云原生数据库 TDSQL-C 产品架构,包括产品的研发背景和架构主要特性; 第二部分,分享用户场景实践,针对线上真实的用户场景做一些分析和针对性实践; 第三部分,分享系统关键优化; 第四部
在2018年11月16日举行的『数据技术嘉年华』大会上,我对行业近期的观察和思考做了一个总结,在此和大家分享
领取专属 10元无门槛券
手把手带您无忧上云