首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    分布式数据库在光大银行关键业务系统的应用探索

    大家好,我是来自中国光大银行信息科技部的王志刚,非常高兴有机会给大家分享一些分布式数据库在光大银行的应用探索。我目前在光大银行银行信息科技部负责数据库管理团队,在加入光大银行之前在三星、索尼爱立信,还有 Oracle 工作过,一直在负责数据库相关的工作。在近十年我和我的团队一直负责光大银行总行的数据库运维,这里面既包括我们的交易型数据库,也包括 MPP,还有 Hadoop 这样的大数据运维。在运维的过程中,我们一直也在思考现在的数据库有哪些问题、面临哪些风险、数据库技术的发展趋势是什么,这一点是很重要的,因为它决定了我们为什么要转向分布式,我们希望分布式能替我们解决哪些问题,它能够解决哪些问题和它不能够解决哪些问题。

    04

    系统架构师论文-论分布式数据库的设计与实现(-MIS系统)

    分布式数据库系统把应用所需的数据存放在多个数据库服务器上,完成某个数据操作要涉及到访问多个服务器,这适用于某种特定需要的应用。我在主持设计开发的一个MIS系统中,为了达到了在低速网络通道下有效提高应用程序性能的目的,使用了 Sybase的分布式数据库技术。我设计的这个系统是采用典型的C/S结构,但许多客户端连接服务器的网络采用电话线拨号,速度有限,传统Windows界面的客户端应用程序相应速度比较慢。考虑到B/S 结构也避免不了大量数据从服务器端传输到客户端,我认为WEB界面并不能有效解决这个问题,所以采用了优化数据库结构的方法,把数据分两部分存放,基础数据放客户机,会员资料主要采用键码放服务器,应用程序再现数据时从服务器取键码,到客户机取対应的解释,由于键码的数据重少,网络传输便快。在构建这个分布式数据库系统的过程中,我着重研究并解决了数据同歩和事务协调的问题,取得了良好的应用效果。我认为,分布式数据库系统的技术在Intenet时代正当其道,大有发展前景。

    01

    系统架构师论文-论分布式数据库的集成

    本文讨论了某公司发货系统的分布式数据库集成解决方案。该公司由于业务的发展,要在另三个城市设立货仓进行发货。为此,需要増加原先的MIS系统实现这一功能。公司委任我作为项目经理完成系统的设计和开发的工作。我经过分析,使用了 Sybase的分布式数据库技术。我设计的这个系统是采用典型的C/S结构,但客户端连接服务器的网络采用电话线拨号,速度有限,传统Windows界面的客户端应用程序相应速度比较慢。于是我采用了优化数 据库结构的方法,把数据分两部份存放,基础数据放客户机,销售资料主要采用键码放服务器,应用程序再现数据时从服务器取键码,到客户机取対应的解释。由于键码的数据量少,网络传输便快。在构建这个公布式数据库系统的过程中,我着重研究并解决了数据同歩和事务协调的问题,到得了良好的应用效果。

    01

    MyCat:第四章:Mycat中的概念

    Mycat中的概念 数据库中间件 前面讲了Mycat是一个开源的分布式数据库系统,但是由于真正的数据库需要存储引擎,而Mycat并没有存储引擎,所以并不是 完全意义的分布式数据库系统。 那么Mycat是什么?Mycat是数据库中间件,就是介于数据库与应用之间,进行数据处理与交互的中间服务。由于前面讲的对数 据进行分片处理之后,从原有的一个库,被切分为多个分片数据库,所有的分片数据库集群构成了整个完整的数据库存储。 如上图所表示,数据被分到多个分片数据库后,应用如果需要读取数据,就要需要处理多个数据源的数据。如果没有数据库中间 件,那么应用将直接面对分片集群,数据源切换、事务处理、数据聚合都需要应用直接处理,原本该是专注于业务的应用,将会 花大量的工作来处理分片后的问题,最重要的是每个应用处理将是完全的重复造轮子。 所以有了数据库中间件,应用只需要集中与业务处理,大量的通用的数据聚合,事务,数据源切换都由中间件来处理,中间件的 性能与处理能力将直接决定应用的读写性能,所以一款好的数据库中间件至关重要。 逻辑库(schema) 逻辑库(schema) 前面一节讲了数据库中间件,通常对实际应用来说,并不需要知道中间件的存在,业务开发人员只需要知道数据库的概念,所以 数据库中间件可以被看做是一个或多个数据库集群构成的逻辑库。 在云计算时代,数据库中间件可以以多租户的形式给一个或多个应用提供服务,每个应用访问的可能是一个独立或者是共享的物 理库,常见的如阿里云数据库服务器RDS。 逻辑表(table) 逻辑表 既然有逻辑库,那么就会有逻辑表,分布式数据库中,对应用来说,读写数据的表就是逻辑表。逻辑表,可以是数据切分后,分 布在一个或多个分片库中,也可以不做数据切分,不分片,只有一个表构成。 分片表 分片表,是指那些原有的很大数据的表,需要切分到多个数据库的表,这样,每个分片都有一部分数据,所有分片构成了完整的 数据。 例如在mycat配置中的t_node就属于分片表,数据按照规则被分到dn1,dn2两个分片节点(dataNode)上。

    非分片表 一个数据库中并不是所有的表都很大,某些表是可以不用进行切分的,非分片是相对分片表来说的,就是那些不需要进行数据切 分的表。 如下配置中t_node,只存在于分片节点(dataNode)dn1上。
    ER表 关系型数据库是基于实体关系模型(Entity-Relationship Model)之上,通过其描述了真实世界中事物与关系,Mycat中的ER表 即是来源于此。根据这一思路,提出了基于E-R关系的数据分片策略,子表的记录与所关联的父表记录存放在同一个数据分片 上,即子表依赖于父表,通过表分组(Table Group)保证数据Join不会跨库操作。 表分组(Table Group)是解决跨分片数据join的一种很好的思路,也是数据切分规划的重要一条规则。 全局表 一个真实的业务系统中,往往存在大量的类似字典表的表,这些表基本上很少变动,字典表具有以下几个特性: • 变动不频繁 • 数据量总体变化不大 • `数据规模不大,很少有超过数十万条记录。 对于这类的表,在分片的情况下,当业务表因为规模而进行分片以后,业务表与这些附属的字典表之间的关联,就成了比较棘手 的问题,所以Mycat中通过数据冗余来解决这类表的join,即所有的分片都有一份数据的拷贝,所有将字典表或者符合字典表特 性的一些表定义为全局表。 数据冗余是解决跨分片数据join的一种很好的思路,也是数据切分规划的另外一条重要规则。 分片节点(dataNode) 分片节点(dataNode) 数据切分后,一个大表被分到不同的分片数据库上面,每个表分片所在的数据库就是分片节点(dataNode)。 节点主机(dataHost) 数据切分后,每个分片节点(dataNode)不一定都会独占一台机器,同一机器上面可以有多个分片数据库,这样一个或多个分片 节点(dataNode)所在的机器就是节点主机(dataHost),为了规避单节点主机并发数限制,尽量将读写压力高的分片节点 (dataNode)均衡的放在不同的节点主机(dataHost). 分片规则(rule) 分片规则 前面讲了数据切分,一个大表被分成若干个分片表,就需要一定的规则,这样按照某种业务规则把数据分到某个分片的规则就是 分片规则,数据切分选择合适的分片规则非常重要,将极大的避免后续数据处理的难度。 全局序列号(sequence) 全局序列号(

    01
    领券