首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    解析美女出的一道状态机题(x、y和z值)

    C的缺省子状态是C1,状态机进入C1,执行C1的入口活动z=z*2,z的值变为6。 e1发生,状态机保持在C1,执行动作x=4,x的值变为4。 e3发生,先检查迁移的警戒[z==6]。...e4发生,状态机离开C2,执行C2的出口活动x=-1,x的值变为-1。然后,状态机离开C,执行C的出口活动y=1,y的值变为1。浅历史状态记住离开时所处的同一层的子状态C2。...然后状态机进入E,执行E的入口活动y++,y的值变为2。 e1发生,状态机返回历史状态,即C2。先父后子执行入口活动。先执行C的入口活动z++;y=2。z的值变为4,y的值变为2。...然后执行C2的入口活动y=0,y的值变为0。 e5发生,状态机离开C2,执行C2的出口活动x=-1,x的值变为-1。状态机迁移到C的终止状态,触发了完成迁移。图上有完成迁移由C指向A。...离开C时,执行C的出口活动y=1,y的值变为1。状态机进入A时,执行A的入口活动z=0。因此,最终x=-1,y=1,z=0。

    78610

    两个对象值相同(x.equals(y) == true),但却可有不同的hash code,这句话对不对?

    不对,如果两个对象x和y满足x.equals(y) == true,它们的哈希码(hash code)应当相同。...Java对于eqauls方法和hashCode方法是这样规定的:(1)如果两个对象相同(equals方法返回true),那么它们的hashCode值一定要相同;(2)如果两个对象的hashCode相同,...》、《Java编程思想》以及《重构:改善既有代码质量》是Java程序员必看书籍,如果你还没看过,那就赶紧去亚马逊买一本吧)中是这样介绍equals方法的:首先equals方法必须满足自反性(x.equals...(x)必须返回true)、对称性(x.equals(y)返回true时,y.equals(x)也必须返回true)、传递性(x.equals(y)和y.equals(z)都返回true时,x.equals...(z)也必须返回true)和一致性(当x和y引用的对象信息没有被修改时,多次调用x.equals(y)应该得到同样的返回值),而且对于任何非null值的引用x,x.equals(null)必须返回false

    1K20

    图像增强综述

    ,高于截止频率的通过。...伪彩色图像的含义是,每个像素的颜色不是由每个基色分量的数值直接决定,而是把像素值当作彩色查找表(事先做好的)的表项入口地址,去查找一个显示图像时使用的R,G,B强度值,用查找出的R,G,B强度值产生的彩色称为伪彩色...基于这个理论,可以抽象下图中的公式\(I(x, y)=R(x, y) \bullet L(x, y)\),\(I(x, y)\)代表观察到的图像,\(R(x, y)\)代表物体的反射属性,\(L(x,...5.1 Single-Scale Retinex 在Retinex理论中,一个假定是光照\(I(x, y)\)是缓慢变化的,也就是低频的,要从\(I(x, y)\)中还原出\(R(x, y)\),所以可以通过低通滤波器得到光照分量...C的表达式为: \[ R_{M S R C R_{i}}(x, y)=C_{i}(x, y) R_{M S R_{i}}(x, y) \] \[ C_{i}(x, y)=f\left[\frac{I_

    1.6K41

    卷积神经网络中PETCT图像的纹理特征提取

    1.1 举例子:CT图像的直方图 ? 左图是原始的CT图像,右图是该图像的直方图 1. CT图像的像素值范围是-1000~1000。...以20个像素值为横坐标,对应的频率为纵坐标,即可画出这个CT图像的直方图。...比如,一幅图中,A处出现了像素值为x的值,如果在距离A处一个特定的地方出现了像素值为y的值,那么得到的GLCM中,坐标(x,y)处的计数加一。...假设我们是一个灰度图,x和y的范围都是固定的(0-255),那么也就是说这个统计矩阵也是固定的,是256×256的大小,矩阵中的数值就是频数统计结果,最后转换成频率就是GLCM啦。...注意哦,这里的x,y是原来的CT图像的像素值大小,i,j,k,del_i,del_j,del_k,x,y的意义可不要搞混喽!

    1.7K30

    绘制频率分布直方图的三种方法,总结的很用心!

    本次案例通过生成深圳市疫情个案数据集中所有患者的年龄参数直方图。 分别使用Matplotlib、Pandas、Seaborn模块可视化Histogram。...#添加x轴和y轴标签 plt.xlabel("年龄") plt.ylabel("核密度值") #添加标题 plt.title("患者年龄分布") #显示图例 plt.legend() #显示图形...('分组',labelpad=10) plt.ylabel('病例数') plt.savefig(r"bar.jpg") # 条形图 # 将柱形图x轴和y轴调换,barh方法 # plt.barh(y...2)、bins:指定直方图条形的个数。 3)、range:指定直方图数据的上下界,默认包含绘图数据的最大值和最小值。 4)、normed:是否将直方图的频数转换成频率。...15)、label:设置直方图的标签,可通过legend展示图例。 16)、stacked:当有多个数据时,是否需要将直方图呈堆叠摆放,默认水平摆放。

    36.6K42

    数字图像处理必备基本知识

    数字图像1600x1200表示空间分辨率为1600x1200像素;灰度范围0~255指示图像的256阶灰阶,就是通过不同程度的灰色来来表示图像的明暗关系,8bit的灰度分辨率。...从灰度直方图中你可可以获得: 暗图像对应的直方图组成成分几种在灰度值较小的左边一侧 明亮的图像的直方图则倾向于灰度值较大的右边一侧 对比度较低的图像对应的直方图窄而集中于灰度级的中部 对比度高的图像对应的直方图分布范围很宽而且分布均匀...灰度直方图定义为数字图像中各灰度级与其出现的频数间的统计关系,它能描述该图像的概貌,例如图像的灰度范围,每个灰度级出现的频率,灰度级的分布,整幅图像的平均明暗和对比度等 13、常用图像增强方法有哪些?...附加: 1、灰度图像跟彩色图像: 灰度图像:是一个二维的灰度(亮度)函数f(x,y) 彩色图像:由三个二维灰度函数f(x,y)组成。...5、像素间的距离 3个像素p,q,r,分别具有坐标(x, y),(s, t),(u, v),度量函数记为D。

    1.3K50

    数字图像处理必备基本知识总结

    数字图像1600x1200表示空间分辨率为1600x1200像素;灰度范围0~255指示图像的256阶灰阶,就是通过不同程度的灰色来来表示图像的明暗关系,8bit的灰度分辨率。...从灰度直方图中你可可以获得: 暗图像对应的直方图组成成分几种在灰度值较小的左边一侧 明亮的图像的直方图则倾向于灰度值较大的右边一侧 对比度较低的图像对应的直方图窄而集中于灰度级的中部 对比度高的图像对应的直方图分布范围很宽而且分布均匀...灰度直方图定义为数字图像中各灰度级与其出现的频数间的统计关系,它能描述该图像的概貌,例如图像的灰度范围,每个灰度级出现的频率,灰度级的分布,整幅图像的平均明暗和对比度等 13、常用图像增强方法有哪些?...附加: 1、灰度图像跟彩色图像: 灰度图像:是一个二维的灰度(亮度)函数f(x,y) 彩色图像:由三个二维灰度函数f(x,y)组成。...5、像素间的距离 3个像素p,q,r,分别具有坐标(x, y),(s, t),(u, v),度量函数记为D。

    15410

    LabVIEW图像灰度分析与变换(基础篇—4)

    参数Interval Range为直方图计算时的最大和最小边界值,只有那些落在最大值和最小值所约定的范围内的像素才会参与直方图的计算; 如果指定的像素级数超出了Interval Range中最大值和最小值约定的范围...观察程序运行后返回的曲线XAxis Average和ROlProfile,可以发现对于灌装正常的药瓶,沿着X轴方向上每列像素的灰度线性平均值均在160附近;而未灌满的药瓶,其沿着X轴方向上每列像素的灰度线性平均值则在灰度范围最大值...对于大小为W×H的数字图像来说,可将各像素灰度值p,视为质点的质量,则图像质心位置可通过以下计算x、y两个方向上质心坐标的公式得到: ? 其中xi、yi为图像中各像素点的坐标。...例如,若上述例子中矩形ROI区域代表某手机工作时显示屏的亮度,则可以通过设定平均灰度值的阈值范围来检测手机显示屏的亮度范围是否符合要求。...若假定输入图像为SrcA(x,y),输出图像为Dst(x,y),则图像灰度变换可由下式表示。显然,它由灰度变换函数GST决定,并不改变图像内像素点之间的空间关系。 ?

    2.1K40

    十一.灰度直方图概念及OpenCV绘制直方图

    灰度直方图基本概念 什么是灰度直方图? 灰度直方图(histogram)是灰度级的函数,描述的是图像中每种灰度级像素的个数,反映图像中每种灰度出现的频率。横坐标是灰度级,纵坐标是灰度级出现的频率。...x = [1, 2, 3, 4, 5] y = [3, 1, 2, 1, 2] 绘制的折线图如下所示: 绘制的直方图如下所示: 如果灰度级为0-255(最小值0黑色,最大值255白色),同样可以绘制对应的直方图...,它的值为[0],彩色图像则为[0]、[1]、[2],分别表示B、G、R mask表示掩码图像,统计整副图像的直方图,设为None,统计图像的某一部分直方图时,需要掩码图像 histSize表示BINS...的数量,参数子集的数目,如下图当bins=3表示三个灰度级 ranges表示像素值范围,例如[0, 255] accumulate表示累计叠加标识,默认为false,如果被设置为true,则直方图在开始分配时不会被清零...(y3, color="r") plt.show() 输出结果有三条线,如下所示: 最后给出调用calcHist()计算B、G、R灰度级并绘制图形的代码。

    2.1K20

    图像处理-图像增强

    ,以达到增强对比度的目的,这种方法可以利用线性或非线性的方法来实现;直方图均衡化则通过使用累积函数对灰度值进行“调整”以实现对比度的增强。...直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布。...r 通过合理的选择c和r可以压缩灰度范围,算法以c=1.0/255.0, r=2实现 Opencv代码: void ExpEnhance(IplImage* img, IplImage* dst) {...,高灰度值部分压缩,来强调图像低灰度部分 s=c*log_{v+1}(1+v*r) 底数为(v+1),实际输入范围为归一化的【0-1】,其输出也为【0-1】。...峰值信噪比-PSNR 图像压缩等领域信号重建质量的评价 MSE为当前图像 X 和参考图像 Y 的均方误差,H、W 分别表示图像的高和宽;n为每像素的比特数,一般取8,即像素灰阶数为256。

    5.8K21

    matlab GUI基础8

    该函数绘制索引图像的直方图 [counts,x]=imhist():该函数返回直方图的数据,通过stem(x,counts)可以绘制直方图 histeq()实现直方图的均衡化,该函数用于灰度图像和索引图像...,该函数的调用格式为: Y=fft2(X):该函数计算图像数据X的二维傅里叶变换 Y=fft2(X,m,n):该函数通过补0来指定数据的大小 ?...10.离散余弦变换(DCT) 采用不同频率和幅值的余弦函数来逼近函数。离散余弦变换常用来进行图像的压缩,例如JPEG格式的图像就是采用了离散余弦变换进行压缩。...p=impixel(X,map):该函数通过鼠标单击获取索引图像中一点的像素值。 p=impixel(RGB):该函数通过鼠标单击获取RGB图像中一点的像素值。...p=impixel(I,c,r):该函数获取灰度图像中,行为c,列为r的像素点的像素值。 p=impixel(I,map,c,r):该函数获取索引图像中,行为c,列为r的像素点的像素值。

    1.3K70

    OpenCV中直方图反向投影算法详解与实现

    论文分为两个部分,前面一部分详细描述了颜色直方图以及通过颜色直方图交叉来实现对象鉴别。可以实现对象背景区分、复杂场景中查找对象、不同光照条件影响等。...假设M表示模型直方图数据、I表示图像直方图数据、直方图交叉匹配可以被描述为如下: ? 其中J表示直方图的范围,即bin的个数。...二:直方图反向投影 直方图反向投影可以通过如下步骤完成 对每个直方图BIN J ? 对图像的每个像素点I(x,y)根据像素值获得对应的直方图分布概率 ?...对得到分布概率图像做卷积 求取局部最大值,即得到已知物体位置信息 正是因为直方图反向投影有这样能力,所以在经典的MeanShift与CAMeanShift跟踪算法中一直是通过直方图反向投影来实现已知对象物体的定位...第一步:直方图计算 OpenCV自己实现通过对直方图插值实现LUT查找,不做RGB颜色降维,本人的实现反其道而行之,对图像颜色做降维得到直方图,不再对直方图计算使用LUT插值查找。

    1.6K60

    Matplotlib数据分布型图表(1)

    数据分布图表主要显示数据集中的数值及其出现的频率或者分布规律,包括统计直方图、核密度曲线图、箱型图、小提琴图等。...统计直方图的作用:1)能够显示各组的频数或数量分布情况;2)易于显示各组之间的频数或数量差别,通过直方图可以看出哪些数据比较集中或者孤立的数据分布。...现有一组数据,记录了2015年全国各站点的PM2.5浓度值,现用统计直方图表示。...就是传入的数组需要划分为几部分。 range:x轴的范围。 density:是否设置y轴为密度(默认为每一组中的数据个数)。 log:是否设置y轴为对数格式,默认为False。...(321, sharex = ax5) ax1.hist(x, bins = 20, edgecolor = 'k') ax1.set_xticks([]) #设置x轴范围,并利用对数表示y轴刻度

    1.8K30

    常用图像增强算法实现——直方图均衡

    2.直方图均衡原理 直方图均衡也称直方图拉伸,是一种简单有效的图像增强技术,通过改变图像的直方图分布,来改变图像中各像素的灰度,主要用于增强动态范围偏小的图像的对比度。...采用直方图均衡化,可以把原始图像的直方图变换为均匀分布的形式,这样就增加了像素之间灰度值差别的动态范围,从而达到增强图像整体对比度的效果。...图像f(x,y)灰度直方图的一维离散函数,可表示如下(L-1一般为255): h(k) = n(k) k=0,1,......,L-1 其中n(k)为图像f(x,y)中灰度级为k的像素个数,对应直方图坐标中对于x轴的y列。图像的视觉效果与直方图有直接的对应关系,改变直方图的分布,对图像的结果也有很大的影响。...我们进一步计算灰度级数出现的频率Pr(k),如下(其中N为图像的像素数量): Pr(k) = n(k)/N 接着,计算原始图像灰度累计分布频率,即: 最后,采用累计分布频率,通过对结果扩大到L-1倍,

    3.4K41

    手把手教你用直方图、饼图和条形图做数据分析(Python代码)

    导读:对数据进行质量分析以后,接下来可通过绘制图表、计算某些特征量等手段进行数据的特征分析。 其中,分布分析能揭示数据的分布特征和分布类型。本文就手把手教你做分布分析。...对于定量数据,要想了解其分布形式是对称的还是非对称的、发现某些特大或特小的可疑值,可做出频率分布表、绘制频率分布直方图、绘制茎叶图进行直观分析;对于定性数据,可用饼图和条形图直观地显示其分布情况。...绘制频率分布直方表 根据分组区间得到如表3-4所示的频率分布表。 其中,第1列将数据所在的范围分成若干组段,其中第1个组段要包括最小值,最后一个组段要包括最大值。...绘制频率分布直方图 若以2014年第二季度“捞起生鱼片”这道菜每天的销售额组段为横轴,以各组段的频率密度(频率与组距之比)为纵轴,表3-4中的数据可绘制成频率分布直方图,如代码清单3-3所示。...= data['菜品名'] y = data['盈利'] plt.figure(figsize=(8, 4)) # 设置画布大小 plt.bar(x,y) plt.rcParams['font.sans-serif

    1.9K11

    【python opencv】直方图查找、绘制和分析

    那么直方图是什么?您可以将直方图视为图形或绘图,从而可以总体了解图像的强度分布。它是在X轴上具有像素值(不总是从0到255的范围),在Y轴上具有图像中相应像素数的图。 这只是理解图像的另一种方式。...通过查看图像的直方图,您可以直观地了解该图像的对比度,亮度,强度分布等。当今几乎所有图像处理工具都提供直方图功能。以下是剑桥彩色网站的图片,我建议您访问该网站以获取更多详细信息。 ?...在这种情况下,我们仅收集关于强度值的一件事的数据。所以这里是1。 RANGE:这是您要测量的强度值的范围。通常,它是[0,256],即所有强度值。 1....OpenCV中的直方图计算 因此,现在我们使用cv.calcHist()函数查找直方图。...使用 OpenCV 好吧,在这里您可以调整直方图的值及其bin值,使其看起来像x,y坐标,以便您可以使用cv.line()或cv.polyline()函数绘制它以生成与上述相同的图像。

    1.3K20

    图像的灰度直方图、直方图均衡化、直方图规定化(匹配)

    图像的灰度直方图是灰度级的函数,描述的是图像中具有该灰度级的像素的个数:其中,横坐标是灰度级,纵坐标是该灰度级出现的频率。 ?...1, // 1D直方图 histSize, // 统计的灰度的个数 ranges); // 灰度值的范围...直方图均衡化,对图像进行非线性拉伸,重新分配图像的灰度值,使一定范围内图像的灰度值大致相等。...均衡化算法 直方图的均衡化实际也是一种灰度的变换过程,将当前的灰度分布通过一个变换函数,变换为范围更宽、灰度分布更均匀的图像。...它可以按照预先设定的它可以按照预先设定的某个形状来调整图像的直方图,运用均衡化原理的基础上,通过建立原始图像和期望图像

    5.4K10
    领券