在本章中,您将学习如何从数据帧中选择一个数据列,该数据列将作为序列返回。 使用此一维对象可以轻松显示不同的方法和运算符如何工作。 许多序列方法返回另一个序列作为输出。...每个组件本身都是一个 Python 对象,具有自己的独特属性和方法。 通常,您希望对单个组件而不是对整个数据帧进行操作。...get_dtype_counts是一种方便的方法,用于直接返回数据帧中所有数据类型的计数。 同构数据是指所有具有相同类型的列的另一个术语。 整个数据帧可能包含不同列的不同数据类型的异构数据。...我记得axis参数的含义,认为 1 看起来像一列,对axis=1的任何操作都会返回一个新的数据列(与该列具有相同数量的项)。...此秘籍将与整个数据帧相同。 第 2 步显示了如何按单个列对数据帧进行排序,这并不是我们想要的。 步骤 3 同时对多个列进行排序。
为了验证我们是否在前几列中找到与idxmax相同的列,我们对has_row_max2本身使用了布尔选择。 列将以不同的顺序排列,因此我们将列名称的顺序转换为集合,这些集合固有地无序比较相等性。...准备 在本秘籍中,我们使用groupby方法执行聚合,以创建具有行和列多重索引的数据帧,然后对其进行处理,以使索引为单个级别,并且列名具有描述性。...默认情况下,merge尝试对齐每个数据帧中具有相同名称的列中的值。 但是,您可以通过将布尔参数left_index和right_index设置为True来选择使其与索引对齐。...通过将表传递给columns参数,可以将表显着减少到仅需要的列。 使用merge时,具有相同名称的连接列将不保留。...我们对count列不感兴趣,因此仅选择mean列来形成条形。 此外,在使用数据帧进行打印时,每个列名称都会出现在图例中。
> list.ABC <- c(list.A, list.B, list.C) 6.2 数据帧 数据帧是类别为"data.frame"的列表; 数据帧会被当作各列具有不同模式和属性的矩阵。...逻辑值和因子在数据帧中保持不变,字符向量将被强制转化为因子,其水平是字符向量中所出现的值; 4 数据帧中作为变量的向量结构必须具有相同的长度,而矩阵结构应当具有相同的行大小。...挂接和卸载数据帧 当觉得使用'$'引用数据帧元素(如't$home')麻烦时,可以进行数据帧挂接 > attach(t) 这样可以直接引用数据帧内的元素,而无需'$',前提是数据帧外没有同名的变量...2 显示多元数据 如果X是一个数值矩阵或数据帧,下面的命令 > pairs(X) 生成一个配对的散点图矩阵,矩阵由X中的每列的列变量对其他各列列变量的散点图组成,得到的矩阵中每个散点图行、列长度都是固定的...dotchart(x, . . . ) 创建一个x中数据的点图(dotchart)。点图中y轴给出x中数据的标签,x轴给出它们的值。它允许对落入某一特定区间的所有数据项方便的进行可视化选择。
一个数据帧代表一个或多个按索引标签对齐的Series对象。 每个序列将是数据帧中的一列,并且每个列都可以具有关联的名称。...一种常见的情况是,一个Series具有整数类型的标签,另一个是字符串,但是值的基本含义是相同的(从远程源获取数据时,这很常见)。...创建数据帧期间的行对齐 选择数据帧的特定列和行 将切片应用于数据帧 通过位置和标签选择数据帧的行和列 标量值查找 应用于数据帧的布尔选择 配置 Pandas 我们使用以下导入和配置语句开始本章中的示例...访问数据帧内的数据 数据帧由行和列组成,并具有从特定行和列中选择数据的结构。 这些选择使用与Series相同的运算符,包括[],.loc[]和.iloc[]。...结果数据帧将由两个列的并集组成,缺少的列数据填充有NaN。 以下内容通过使用与df1相同的索引创建第三个数据帧,但只有一个列的名称不在df1中来说明这一点。
我们选择一个ID,一个维度和一个包含值的列/列。包含值的列将转换为两列:一列用于变量(值列的名称),另一列用于值(变量中包含的数字)。 ?...Unstack 取消堆叠将获取多索引DataFrame并对其进行堆叠,将指定级别的索引转换为具有相应值的新DataFrame的列。在表上调用堆栈后再调用堆栈不会更改该堆栈(原因是存在“ 0 ”)。...使用联接时,公共键列(类似于 合并中的right_on 和 left_on)必须命名为相同的名称。...“inner”:仅包含元件的键是存在于两个数据帧键(交集)。默认合并。 记住:如果您使用过SQL,则单词“ join”应立即与按列添加相联系。...例如,考虑使用pandas.concat([df1,df2])串联的具有相同列名的 两个DataFrame df1 和 df2 : ?
$符号选择特定列,对特定列执行操作。...,我们可以使用数据集中特定列的逻辑向量来仅选择数据集中的行,其中TRUE值与逻辑向量中的位置或索引相同。...---- 注意:有更简单的方法可以使用逻辑表达式对数据帧进行子集化,包括filter()和subset()函数。这些函数将返回逻辑表达式为TRUE的数据帧的行,允许我们在一个步骤中对数据进行子集化。...write.table也是常用的导出函数,允许用户指定要使用的分隔符。此函数通常用于创建制表符分隔的文件。 注意:有时在将具有行名称的数据框写入文件时,列名称将从行名称列开始对齐。...R函数进行数据处理。
将每个 CSV 文件转换为 Pandas 数据帧对象如下图所示: ? 检查数据 & 清理脏数据 在进行探索性分析时,了解您所研究的数据是很重要的。幸运的是,数据帧对象有许多有用的属性,这使得这很容易。...这可以使用与我们在 2018 年 ACT 数据集 定位和删除重复的 ‘Maine’ 值相同的代码来完成: ?...我们需要从四个数据集中确定能代表华盛顿特区/哥伦比亚特区的一贯值。你所做的选择在这两个选项中都不重要,但是最好选择在数据集中出现率最高的名称。...为了与当前的任务保持一致,我们可以使用 .drop() 方法删除多余的列,如下所示: ? 现在所有的数据都具有相同的维度! 不幸的是,仍有许多工作要做。...为了合并数据而没有错误,我们需要对齐 “state” 列的索引,以便在数据帧之间保持一致。我们通过对每个数据集中的 “state” 列进行排序,然后从 0 开始重置索引值: ?
BIG-IP 系统使用参考链路采取一定的聚合动作,例如实现自动选路策略。对于进入参考链路的帧,BIG-IP 系统在 BIG-IP 系统知道可用的所有成员链路上对帧进行负载平衡。...无论采用何种散列算法,具有 2、4 或 8 个链路的主干都可以防止可能对数据吞吐量产生不利影响的倾斜。...然后系统聚合具有相同媒体属性并连接到与参考链路相同的对等点的任何链路。...BIG-IP ®系统通过基于帧中携带的源地址和目标地址(或仅目标地址)计算散列值并将散列值与链接相关联来分发帧。所有具有特定哈希值的帧都在同一链路上传输,从而保持帧顺序。...因此,系统使用生成的散列来确定使用哪个接口来转发流量。 这帧分布散列设置指定系统用作帧分布算法的散列的基础。 默认值为源/目标 IP 地址。
df.isna().sum() 6.使用 loc 和 iloc 添加缺失值 使用 loc 和 iloc 添加缺失值,两者区别如下: loc:选择带标签 iloc:选择索引 我们首先创建 20 个随机索引进行选择...它可以对顺序数据(例如时间序列)非常有用。 8.删除缺失值 处理缺失值的另一个方法是删除它们。以下代码将删除具有任何缺失值的行。...让我们从简单的开始。以下代码将基于 Geography、Gender 组合对行进行分组,然后给出每个组的平均流失率。...让我们创建一个列,根据客户的余额对客户进行排名。...23.数据类型转换 默认情况下,分类数据与对象数据类型一起存储。但是,它可能会导致不必要的内存使用,尤其是当分类变量具有较低的基数。 低基数意味着列与行数相比几乎没有唯一值。
使用 NumPy 时,对行和列索引的控制不多; 但是对于一个序列,该序列中的每个元素都必须具有唯一的索引,名称,键,但是您需要考虑一下。...可以将数据帧视为具有公共索引的多个序列的公共长度,它们在单个表格对象中绑定在一起。 该对象类似于 NumPy 2D ndarray,但不是同一件事。 并非所有列都必须具有相同的数据类型。...也就是说,如果要基于索引选择行,而要基于整数位置选择列,请首先使用loc方法选择行,然后使用iloc方法选择列。 执行此操作时,如何选择数据帧的元素没有任何歧义。 如果您只想选择一列怎么办?...我们可以使用sort_index方法重新排列数据帧的行,以使行索引按顺序排列。 我们还可以通过将sort_index的访问参数设置为1来对列进行排序。...为此,您需要将sort_index的就地参数设置为true。 虽然我强调了对数据帧进行排序,但是对序列进行排序实际上是相同的。 让我们来看一个例子。
为了提取这些标题以创建新变量,我们需要在训练集和测试集上执行相同的操作,以便这些功能可用于增长我们的决策树,并对看不见的测试数据进行预测。在两个数据集上同时执行相同过程的简单方法是合并它们。...在R中我们可以使用rbind,它代表行绑定,只要两个数据帧具有彼此相同的列。..." " Owen Harris" 字符串拆分使用双重堆叠矩阵,因为它永远不能确定给定的正则表达式将具有相同数量的块。...因为我们在单个数据帧上构建了因子,然后在构建它们之后将它们拆分,R将为所有新数据帧提供所有因子级别,即使该因子不存在于一个数据帧中也是如此。它仍然具有因子水平,但在集合中没有实际观察。整洁的把戏对吗?...我们已根据原始列车和测试集的大小隔离了组合数据集的某些行范围。之后的逗号后面没有数字表示我们想要使用此子集获取所有列并将其存储到指定的数据帧。
二、数据选择 在本章中,我们将学习使用 Pandas 进行数据选择的高级技术,如何选择数据子集,如何从数据集中选择多个行和列,如何对 Pandas 数据帧或一序列数据进行排序,如何过滤 Pandas 数据帧的角色...我们还将使用各种方法对 Pandas 数据帧进行排序,并学习如何对 Pandas series对象进行排序。...我们看到了使用sort_values方法对 Pandas 数据帧中的数据进行排序的各种方法。 我们还学习了如何对 Pandas 序列对象进行排序。...我们还学习了如何从数据集中选择多个角色和列。 我们学习了如何对 Pandas 数据帧或序列进行排序。...最后,我们看到了一些使我们可以使用索引进行数据选择的方法。 在下一节中,我们将学习如何重命名 Pandas 数据帧中的列。
pandas 读取 下面,使用 Pandas 包来读取相同的一批数据,并查看程序所运行的时间。...诸如矩阵索引,C/C++,R,Pandas,Numpy 中都使用相同的 DT[i,j] 的数学表示法。下面来看看如何使用 datatable 来进行一些常见的数据处理工作。 ?...▌选择行/列的子集 下面的代码能够从整个数据集中筛选出所有行及 funded_amnt 列: datatable_df[:,'funded_amnt'] ?...这里展示的是如何选择数据集中前5行3列的数据,如下所示: datatable_df[:5,:3] ?...▌帧排序 datatable 排序 在 datatable 中通过特定的列来对帧进行排序操作,如下所示: %%time datatable_df.sort('funded_amnt_inv') ___
pandas 读取 下面,使用 Pandas 包来读取相同的一批数据,并查看程序所运行的时间。...诸如矩阵索引,C/C++,R,Pandas,Numpy 中都使用相同的 DT[i,j] 的数学表示法。下面来看看如何使用 datatable 来进行一些常见的数据处理工作。 ?...▌选择行/列的子集 下面的代码能够从整个数据集中筛选出所有行及 funded_amnt 列: datatable_df[:,'funded_amnt'] ?...这里展示的是如何选择数据集中前5行3列的数据,如下所示: datatable_df[:5,:3] ?...▌帧排序 datatable 排序 在 datatable 中通过特定的列来对帧进行排序操作,如下所示: %%timedatatable_df.sort('funded_amnt_inv')_____
数据集可以讲许多故事。作为一个很好的开始,可以检查变量之间的相关性。 研究数据集以查看哪些变量具有相关性时,这是我首先执行的任务之一。这使我更好地了解我正在处理的数据。...这个数据集包含哪些电影是什么流媒体平台的数据。它还包括关于每部电影的一些不同的描述,例如名称、时长、IMDB 分数等。 导入和清理 我们将首先导入数据集并使用pandas将其转换为数据帧。...使用core方法 使用Pandas 的core方法,我们可以看到数据帧中所有数值列的相关性。因为这是一个方法,我们所要做的就是在DataFrame上调用它。返回值将是一个显示相关性的新数据帧。...如果我们打算使用这些数据来建立一个模型,那么最好在将其分解为测试和训练数据之前对其进行随机化。 看起来Netflix有更新的电影。这可能是一个有待探索的假设。...与其他流媒体平台相比,Netflix和Amazon似乎拥有最多的电影。这是另一个有待探索的假设。 不同的平台似乎不会根据评论家或运行时的评分来选择电影。这是我们可以探索的另一个很酷的假设。
而在选择行和列的时候可以传入列表,或者使用冒号来进行切片索引。...Python对如下的二维数组进行提取,选择第一行第二列的数据元素并输出。...[0,1] 【例3】请使用Python对如下的二维数组进行提取,选择第一行的数据元素并输出。...= False ) join()方法参数详解 参数 描述 Self 表示的是join必须发生在同一数据帧上 Other 提到需要连接的另一个数据帧 On 指定必须在其上进行连接的键...按照数据进行排序,首先按照C列进行降序排序,在C列相同的情况下,按照B列进行升序排序。
简而言之,pandas 和 statstools 可以描述为 Python 对 R 的回答,即数据分析和统计编程语言,它既提供数据结构(如 R 数据帧架),又提供丰富的统计库用于数据分析。...列表索引器用于选择多个列。 一个数据帧的多列切片只能生成另一个数据帧,因为它是 2D 的。 因此,在后一种情况下返回的是一个数据帧。...使用where()方法 where()方法用于确保布尔过滤的结果与原始数据具有相同的形状。...由于并非所有列都存在于两个数据帧中,因此对于不属于交集的数据帧中的每一行,来自另一个数据帧的列均为NaN。...其余的非 ID 列可被视为变量,并可进行透视设置并成为名称-值两列方案的一部分。 ID 列唯一标识数据帧中的一行。
这里我只选择了一个 GPU,但您可以根据需要选择多个。 这仍然给我们留下了为什么数据科学从业者对使用 GPU 犹豫不决的原因 3。数据科学已经是许多领域的一个领域。...所以我对其进行了测试,仅使用基于 CPU 的 Python 库导入、清理、过滤、特征化,并使用纽约出租车的行程数据训练模型。然后我用相应的 NVIDIA 库替换了 CPU 库,但保留了它们绑定的名称。...请注意,我必须压缩然后枚举hasrsine_distance函数中的参数。 此外,当将此函数应用于数据帧时,apply_rows函数需要具有特定规则的输入参数。...例如,传递给 incols 的值是传递给函数的列的名称,它们必须与函数中的参数名称匹配,或者您必须传递一个将列名称与其对应的匹配的字典函数参数。...结论 GPU 不仅用于深度学习,还具有 RAPIDS 库 GPU 可用于加速完整的端到端数据科学生命周期的性能,而对所有数据科学家都知道和喜爱的 CPU 库进行最少的更改。
领取专属 10元无门槛券
手把手带您无忧上云