首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

R语言随机森林模型中具有相关特征的变量重要性

p=13546 ---- 变量重要性图是查看模型中哪些变量有趣的好工具。由于我们通常在随机森林中使用它,因此它看起来非常适合非常大的数据集。...大型数据集的问题在于许多特征是“相关的”,在这种情况下,很难比较可变重要性图的值的解释。 为了获得更可靠的结果,我生成了100个大小为1,000的数据集。...顶部的紫色线是的可变重要性值 ,该值相当稳定(作为一阶近似值,几乎恒定)。红线是的变量重要性函数, 蓝线是的变量重要性函数 。例如,具有两个高度相关变量的重要性函数为 ?...实际上,我想到的是当我们考虑逐步过程时以及从集合中删除每个变量时得到的结果, apply(IMP,1,mean)} 在这里,如果我们使用与以前相同的代码, 我们得到以下图 plot(C,VI[2,]...然而,当我们拥有很多相关特征时,讨论特征的重要性并不是那么直观。

1.9K20

R语言随机森林模型中具有相关特征的变量重要性

p=13546 ---- 变量重要性图是查看模型中哪些变量有趣的好工具。由于我们通常在随机森林中使用它,因此它看起来非常适合非常大的数据集。...大型数据集的问题在于许多特征是“相关的”,在这种情况下,很难比较可变重要性图的值的解释。...例如,考虑一个非常简单的线性模型 在这里,我们使用一个随机森林的特征之间的关系模型,但实际上,我们考虑另一个特点-不用于产生数据-  ,即相关   。我们考虑这三个特征的随机森林   。...我想我发现图形混乱,因为我可能会想到的  重要性 的    恒定。考虑到其他变量的存在,我们已经掌握了每个变量的重要性。...实际上,我想到的是当我们考虑逐步过程时以及从集合中删除每个变量时得到的结果, apply(IMP,1,mean)} 在这里,如果我们使用与以前相同的代码, 我们得到以下图 plot(C,VI[2,],type

2.1K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    python随机取list中的元素

    ----------------\n") f4.write("----------------------\n") f4.seek(10)                       #光标移动到10的位置...f4.write("test4")                    #再写入会将原内容覆盖 f4.seek(0)                        #将光标移动到开头的位置 print...----------------\n") f5.write("----------------------\n") f5.seek(10)                       #光标移动到10的位置...U模式,"U"表示在读取时,可以将 \r \n \r\n自动转换成 \n (与 r 或 r+ 模式同使用) 三、文件循环 #按行循环,并且将第五行替换 f = open("file_test","r",..."utf-8") as f:          #类似于f = open("file_test","r",encoding="utf-8") with open("file_test","r",encoding

    1.6K10

    【python高级编程】namedtuple用法--给元组中的每个元素命名

    参考链接: Python中的命名元组Namedtuple 为什么要给元组中的每个元素命名  给每个元组中的元素命名,我们就可以使用名字去访问对应元素,相对于索引访问,这样可以大大提高程序的可读性。 ...使用元组赋值法  在c语言中,我们可以定义常量来命令,或者使用枚举变量来完成,而在python中,可以使用元组赋值法进行。...是collections模块中的一个工厂函数,使用此函数可以创建一个可读性更强的元组。...在使用普通的元组时,我们只能通过索引下标去访问对应元素,而namedtuple,我们既可以使用索引下标去访问,也可以通过名字去访问,增加了代码的可读性。 ...field_names: 参数类型为字符串序列,用于为创建的元组的每个元素命名,可以传入像[‘a’, ‘b’]这样的序列,也可以传入'a b'或'a, b'这种被分割字符分割的单字符串,但必须是合法标识符

    2.8K40

    使用R语言随机波动模型SV处理时间序列中的随机波动率

    R> par(mfrow = c(2, 1))R> plot(sim) 运行采样器 函数svsample,它用作C语言中实际采样器的R-wrapper 。...svsample的返回值是svdraws类型的对象,该对象是具有八个元素的命名列表,其中包含(1)参数在para中绘制,(2)潜在的对数波动率,(3)初始潜在的对数波动率绘制latent0,(4)y中提供的数据...,(5)运行时中的采样运行时,(6)先验中的先验超参数,(7)细化中的细化值,以及(8)这些图的汇总统计信息,以及一些常见的转换。...评估输出并显示结果 按照常规做法,可使用svdraws对象的print和summary方法。每个参数都有两个可选参数showpara和showlatent,用于指定应显示的输出。...此方法返回svresid类的实向量,其中包含每个时间点所请求的标准化残差的摘要统计量。还有一种绘图方法,当通过参数origdata给定时,提供了将标准化残差与原始数据进行比较的选项。

    1.9K10

    随机获取某个集合中的某个元素,多次获取时不重复

    譬如想随机获取某个集合中的某个数,用户多次请求时尽量不给用户返回重复的数。 倘若用random的nextInt方法,当只有两三个元素时,则很可能多次请求返回的都是同一个,体验很差。...java.util.Collections; import java.util.List; import java.util.concurrent.CopyOnWriteArrayList; /** * 产生随机...public synchronized String getRandomElement() { if (dataList.isEmpty()) { // 如果列表中的元素已经用尽...,可以选择重新填充或者返回空值 return null; } Collections.shuffle(dataList); // 随机打乱列表顺序...(dataList.isEmpty()) { // 如果列表中的元素已经用尽,将已使用的元素重新放回列表以实现循环使用 dataList.addAll(

    15610

    盘点对Python列表中每个元素前面连续重复次数的数列统计

    一、前言 前几天在Python钻石流群有个叫【周凡】的粉丝问了Python列表的问题,如下图所示。 下图是他的原始内容。...= 0 else 0 list2.append(l) print(list2) 本质上来说的话,这个方法和【瑜亮老师】的一模一样,只不过他这里使用了一行代码,将判断简化了。...: pre_num = num result[num] = num - pre_num print(result) print(result) 这个方法就是判断当前的数据和之前的...这篇文章主要盘点一个Python列表统计小题目,文中针对该问题给出了具体的解析和代码演示,一共5个方法,帮助粉丝顺利解决了问题。如果你还有其他解法,欢迎私信我。...最后感谢粉丝【周凡】提问,感谢【瑜亮老师】、【绅】、【逸总】、【月神】、【布达佩斯的永恒】大佬给出的代码和具体解析,感谢【dcpeng】、【懒人在思考】、【王子】、【猫药师Kelly】、【冯诚】等人参与学习交流

    2.4K50

    随机森林算法(有监督学习)

    2.1、数据的随机选取   首先,从原始的数据集中采取有放回的抽样,构造子数据集,子数据集的数据量是和原始数据集相同的。不同子数据集的元素可以重复,同一个子数据集中的元素也可以重复。...第二,利用子数据集来构建子决策树,将这个数据放到每个子决策树中,每个子决策树输出一个结果。...2.2、待选特征的随机选取   与数据集的随机选取类似,随机森林中的子树的每一个分裂过程并未用到所有的待选特征,而是从所有的待选特征中随机选取一定的特征,之后再在随机选取的特征中选取最优的特征。...训练速度快,可以得到变量重要性排序(两种:基于OOB误分率的增加量和基于分裂时的GINI下降量;   g. 在训练过程中,能够检测到feature间的互相影响;   h....因此,不但样本是随机的,连每个节点变量(Features)的产生都是随机的。

    37720

    R语言调整随机对照试验中的基线协变量

    参与者被随机分配到两个(有时更多)的群体这一事实确保了,至少在期望中,两个治疗组在测量的,重要的是可能影响结果的未测量因素方面是平衡的。...因此,两组之间结果的差异可归因于随机化治疗而不是对照(通常是另一种治疗)的效果。 如果随机化没有受到影响,即使不调整任何基线协变量,试验的治疗效果估计也是无偏的。...即使在各组之间的某些基线变量出现不平衡的情况下也是如此。这是因为偏差被定义为估计量(由我们的统计程序给出,如线性回归)是否在重复样本中具有等于目标参数的期望。...有时估计值会高于真实值,有时低于真实值,但只要平均值等于目标值,我们就会说估算值是无偏见的。 协变量调整 现在让我们考虑调整一个或多个基线协变量,在我们的分析中随机化时。...这通常通过拟合结果的回归模型来完成,随机组和基线变量作为协变量。 我们可以使用R来说明这一点。我们将模拟n = 50个受试者的小型研究的数据,随机化50%治疗= 0和50%治疗= 1。

    1.7K10

    - 从长度为m的int数组中随机取出n个元素,每次取的元素都是之前未取过的

    题目:从长度为m的int数组中随机取出n个元素,每次取的元素都是之前未取过的 Fisher-Yates洗牌算法是由 Ronald A.Fisher和Frank Yates于1938年发明的,后来被Knuth...等概率: 洗牌算法有些人也称等概率洗牌算法,其实发牌的过程和我们抽签一样的,大学概率论讲过抽签是等概率的,同样洗牌算法选中每个元素是等概率的。...用洗牌算法思路从1、2、3、4、5这5个数中,随机取一个数 4被抽中的概率是1/5 5被抽中的概率是1/4 * 4/5 = 1/5 2被抽中的概率是1/3 * 3/4 *...list.size() * Math.random()); System.out.println(list.remove(t)); } } ---- Knuth洗牌算法 在上面的介绍的发牌过程中...该算法的基本思想和 Fisher 类似,每次从未处理的数据中随机取出一个数字,然后把该数字放在数组的尾部,即数组尾部存放的是已经处理过的数字。

    1.7K10

    Java如何随机获取List中的元素?实现代码一次搞定!

    引言在Java开发中,我们经常会遇到从一个List中随机获取元素的需求。可能是需要随机展示广告、抽奖活动、随机推荐等场景。本文将介绍几种简单而高效的方法来实现这个功能,并给出相应的代码示例。...方法一:使用Random类我们可以利用java.util.Random类来生成一个随机索引,然后根据该索引从List中获取对应的元素。...下面是使用Random类实现随机获取元素的示例代码:import java.util.List;import java.util.Random;public class RandomElementSelector...接着,我们创建一个java.util.Random对象,并使用nextInt()方法生成一个介于0到List大小之间(不包括List大小)的随机索引。最后,通过get()方法获取对应索引的元素。...这个方法将会随机打乱List中的元素顺序。

    3.7K40

    机器器学习算法系列列(1):随机森林随机森林原理随机森林的生成随机采样与完全分裂随机森林的变体

    在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每 一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一 类被选择最多,就预测这个样本为那一类。...feature比较重要 在创建随机森林的时候,对generlization error使用的是无偏估计 训练速度快 在训练过程中,能够检测到feature间的互相影响 容易易做成并行行化方法...2.2 影响分类效果的参数 随机森林的分类效果(即错误率)与以下两个因素有关: 1)森林中任意两棵树的相关性:相关性越大,错误率越大 2)森林中每棵树的分类能力:每棵树的分类能力越强,整个森林的错误率越低...袋外错误率(oob error)计算⽅方式如下: 1)对每个样本计算它作为oob样本的树对它的分类情况 2)以简单多数投票作为该样本的分类结果 3)最后用误分个数占样本总数的比率作为随机森林的oob...按这种算法得到的随机森林中的每一 棵都是很弱的,但是组合起来就很厉害了。

    2.1K20

    XGBOOST算法

    知识复习:随机森林 随机森林是在决策树(回归树)的基础上放入许多棵树,并行的,独立的构造出每一棵树,构成一个森林,这些树之间本身没有关系,通过最后将森林中所有的结果选举出最佳的结果达到优化提升的目的。...定义: XGBOOST算法也是有多颗树,只不过这里有一点区别,与随机森林中的对比起来说的化,可以把随机森立中的树理解成为并行的,但是XGBOOST中虽然有多棵树,但是它每一次放入第k棵树都是去判断第k-...k-1颗树,并且放入该树之后,想过还要有所提升才准许放入,这就相当于监督问题,这个时候就可以按照监督学习的步骤去处理,模型表示如下,k表示树的个数,f表示构建的每个树的结构,xi表示第i个样本,xi在每个树上的得分值的和就是...,加入惩罚系数就是为了提升模型的泛化能力,比如在L1和L2正则化中通过加入各个元素的绝对值之和||w||1或者绝对值的平方开根号得到||w||2)所得到的一个函数,这个函数就是我们的目标函数,所触及模型就转化为求目标函数的问题...,也就是将上式中的损失loss函数l展开为平方误差的形式。

    76230
    领券