如果我们手上有一个数值向量,怎么用R去获取这个向量的各个分位数值呢?...我们来看个具体的例子 a=1:10 summary(a) 我们可以得到下面的结果,summary(a)一共得到6个数值,分别是a的最小值,1/4分位数,中值(2/4分位数),均值,3/4分位数和最大值。...四分位数(Quartile),即统计学中,把所有数值由小到大排列并分成四等份,处于三个分割点位置的数值就是四分位数。...第一四分位数 (Q1),又称“较小四分位数”,等于该样本中所有数值由小到大排列后第25%的数字。 第二四分位数 (Q2),又称“中位数”,等于该样本中所有数值由小到大排列后第50%的数字。...这个函数除了可以输出固定这这个几个分位数值以外,还可以输出你指定的分位数值。
假设我们有一个预测问题,其中我们要预测一个连续型变量的分布,并且我们关注不同的分位数,例如中位数、0.25分位数、0.75分位数等。...待预测的四分位数(百分位数)在列中为[0.500,0.700,0.950,0.990,0.995],在行中为批大小[1,4,16,64,256],总共有25个预测。...在10,000个训练数据实例(蓝色)中,低于预测输出值(红色)的实例的比率在图中被标记为“实际”值。 低于指定百分位数值的样本百分比通常接近指定值,并且输出分位数预测的是非常直接的。...总结 分位数回归是一种强大的统计工具,对于那些关注数据分布中不同区域的问题,以及需要更加灵活建模的情况,都是一种有价值的方法。...Quantile loss在一些应用中很有用,特别是在金融领域的风险管理问题中,因为它提供了一个在不同分位数下评估模型性能的方法。
p=18984 现在,分位数回归已被确立为重要的计量经济学工具。与均值回归(OLS)不同,目标不是给定x的均值,而是给定x的一些分位数。您可以使用它来查找具有良好上升潜力的股票。...使用下图最好地理解分位数回归的用法: ? 绘制的是股票收益。蓝线是OLS拟合值,红线是分位数(80%和20%)拟合值。 在上部面板中,您可以看到,当市场上涨时(X轴上的正值很高),Y轴上的分散很大。...当市场下跌时,相对的分散程度而言较大。在底部面板中,情况相反。当市场上涨时,您“非常了解”股票会发生什么,但是当市场处于下跌时,股票收益的不确定性就会降低。...考虑到其他因素,您希望投资组合中包含高位股票。当市场上涨时,它们收益很好,但同时在下跌的过程中提供相对的确定性。...假设我们以最差的比率做空股票,并以最佳的比率做多股票。
一,归一化层概述 归一化技术对于训练深度神经网络非常重要。 它们的主要作用是让模型的中间层的输入分布稳定在合适的范围,加快模型训练过程的收敛速度,并提升模型对输入变动的抗干扰能力。...pytorch中内置的归一化层包括 nn.BatchNorm2d(1d), nn.LayerNorm, nn.GroupNorm, nn.InstanceNorm2d 等等。...结构化数据通常使用BatchNorm1D归一化 【结构化数据的主要区分度来自每个样本特征在全体样本中的排序,将全部样本的某个特征都进行相同的放大缩小平移操作,样本间的区分度基本保持不变,所以结构化数据可以做...训练过程BatchNorm的均值和方差和根据mini-batch中的数据估计的,而推理过程中BatchNorm的均值和方差是用的训练过程中的全体样本估计的。...因此预测过程是稳定的,相同的样本不会因为所在批次的差异得到不同的结果,但训练过程中则会受到批次中其他样本的影响所以有正则化效果。
本文想在R软件中更好地了解分位数回归优化。在查看分位数回归之前,让我们从样本中计算中位数或分位数。 中位数 考虑一个样本 ? 。要计算中位数,请求解 ? 可以使用线性编程技术解决。..., r = lp("min", c(rep(1,2*n),0), tail(r$solution,1) [1] 1.01523 分位数 当然,我们可以将之前的代码改编为分位数 tau =...R代码 r = lp("min", c(rep(tau,n),rep(1-tau,n),0), [1] 0.674124 分位数回归(简单) 考虑一个数据集,该数据集是一个主要城市的单位租金与面积...分位数回归的线性程序 ? 与ai,bi≥0和 ?...多元分位数回归 现在,我们尝试使用两个协变量呢,例如,让我们看看是否可以将单位的租金解释为面积的(线性)函数和建筑年龄。
Sol 很神仙的题目啊,考场上只会$n^2$的暴力。。 考虑直接二分一个$mid$,我们来判断最终答案是否可能大于$x$。...判断的时候记录一下前缀最小值即可, 设$s[i]$表示$1-i$中有多少比它大的,要求的长度为$len$,我们记下$s[i - len]$的最小值为$Mi$ 若$s[i] - Mi > 0$,那么说明在长度至少为...$len$的区间中,大于$mid$的数和小于$mid$的数相互抵消后仍然有比$mid$大的数,此时$mid$是合法的 第一次做这种二分答案,但答案不是给出的数的题。...= 1e9 + 10, ans; while(l r) { int mid = l + r >> 1; if(check(mid)) ans = mid,...l = mid + 1;//是否有比mid大的解 else r = mid - 1; } printf("%d", ans); return 0; } /* 5
日常开发中,有时需要了解数据分布的一些特点,比如这个colllection里documents的平均大小、全部大小等,来调整程序的设计。...对于系统中已经存在大量数据的情况,这种提前分析数据分布模式的工作套路(最佳实践)可以帮助我们有的放矢的进行设计,避免不必要的过度设计或者进行更细致的设计。...如果想获得某个collection相关的各种存储统计信息,可以使用 collStats。...下面的命令可以显示 COLLECTION 中满足条件status=’active’,字段FIELD_A, FIELD_B的数据大小的quantile analysis。...实际使用时用自己的集合名、字段名以及过滤条件进行替换即可。 //最大的Top10和百分比分布。
p=22702 摘要 贝叶斯回归分位数在最近的文献中受到广泛关注,本文实现了贝叶斯系数估计和回归分位数(RQ)中的变量选择,带有lasso和自适应lasso惩罚的贝叶斯。...简介 回归分位数(RQ)由(Koenker和Gilbert,1978)提出,将感兴趣的结果的条件分位数作为预测因子的函数来建模。...贝叶斯_分位数_回归 Tobit RQ为描述非负因变量和协变量向量之间的关系提供了一种方法,可以被表述为因变量的数据未被完全观察到的分位数回归模型。...图3:当τ=0.50时,免疫球蛋白G数据集的系数的路径和密度图。 前列腺癌数据 在本小节中,我们说明贝叶斯分位数回归在前列腺癌数据集(Stamey等人,1989)上的表现。...还可以拟合贝叶斯lassoTobit 分位数回归和贝叶斯自适应lassoTobit 分位数回归。当τ=0.50时,函数可以用来获得Tobit 分位数回归的后验平均值和95%的置信区间。 ?
p=22702 摘要 贝叶斯回归分位数在最近的文献中受到广泛关注,本文实现了贝叶斯系数估计和回归分位数(RQ)中的变量选择,带有lasso和自适应lasso惩罚的贝叶斯。...简介 回归分位数(RQ)由(Koenker和Gilbert,1978)提出,将感兴趣的结果的条件分位数作为预测因子的函数来建模。...贝叶斯_分位数_回归 Tobit RQ为描述非负因变量和协变量向量之间的关系提供了一种方法,可以被表述为因变量的数据未被完全观察到的分位数回归模型。...图3:当τ=0.50时,免疫球蛋白G数据集的系数的路径和密度图。 前列腺癌数据 在本小节中,我们说明贝叶斯分位数回归在前列腺癌数据集(Stamey等人,1989)上的表现。...当τ=0.50时,函数可以用来获得Tobit 分位数回归的后验平均值和95%的置信区间。 结论 在本文中,我们已经说明了在分位数回归(RQ)中进行贝叶斯系数估计和变量选择。
R语言中对小数点的位数的设置 经常用数据分析,有时不同的文件的小数位数不一样,但是我们可以让它们的位数保持一致的,下面的介绍就是设置小数位数。...> a=0.234333323#9位 > a [1] 0.2343333 下面开始设置下 > options(digits=3) > a=0.34434434#8位 > a [1] 0.344 看最大的位数...options(digits=22) > options(digits=23) Error in options(digits = 23) : 'digits'参数不对,可用0...22 从上面知道,最多是22位的,...> a = 0.111222333444555666777888999#27位 > options(digits=22) > a [1] 0.11122233344455566 是的,它的最大位数是22
p=18984 最近我们被客户要求撰写关于分位数回归的研究报告,包括一些图形和统计输出。 现在,分位数回归已被确立为重要的计量经济学工具。...使用下图最好地理解分位数回归的用法: 绘制的是股票收益。蓝线是OLS拟合值,红线是分位数(80%和20%)拟合值。...---- 点击标题查阅往期内容 贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据 01 02 03 04 在上部面板中,您可以看到,当市场上涨时(X轴上的正值很高...本文选自《R语言分位数回归预测筛选有上升潜力的股票》。...点击标题查阅往期内容 matlab使用分位数随机森林(QRF)回归树检测异常值 贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据 分位数自回归QAR分析痛苦指数
我们今天介绍一下神经网络中的归一化方法~ 之前学到的机器学习中的归一化是将数据缩放到特定范围内,以消除不同特征之间的量纲和取值范围差异。...这样做的好处包括降低数据的量纲差异,避免某些特征由于数值过大而对模型产生不成比例的影响,以及防止梯度爆炸或过拟合等问题。 神经网络中的归一化用于加速和稳定学习过程,避免梯度问题。 ...机器学习中的正则化分为L1和L2正则化,sklearn库中的Lasso类和Ridge类来实现L1正则化和L2正则化的线性回归模型。通过调整alpha参数,可以控制正则化的强度。...利用这些统计数据对批次数据进行归一化处理:这一步将数据转换为一个近似以0为中心,标准差为1的正态分布。...尺度变换和偏移:为了保持网络的表达能力,通过可学习的参数γ(尺度因子)和β(平移因子)对归一化后的数据进行缩放和位移。
图(A): 分位数回归 分位数回归概念 分位数回归是估计⼀组回归变量X与被解释变量Y的分位数之间线性关系的建模⽅法。 以往的回归模型实际上是研究被解释变量的条件期望。...在本章中,我们将使用 Neural Prophet 的分位数回归模块。 环境要求 安装 NeuralProphet。 !pip install neuralprophet !...df = data[['ds','cnt']] df.columns = ['ds','y'] 构建分位数回归模型 直接在 NeuralProphet 中构建分位数回归。...图 (E):分位数预测 预测区间和置信区间的区别 预测区间和置信区间在流行趋势中很有帮助,因为它们可以量化不确定性。它们的目标、计算方法和应用是不同的。下面我将用回归来解释两者的区别。...在图(F)中,我在左边画出了线性回归,在右边画出了分位数回归。
文章大纲 spark 中的归一化 MaxAbsScaler MinMaxScaler 参考文献 spark 中的归一化 MaxAbsScaler http://spark.apache.org/docs...The rescaled value for feature E is calculated as: R...,那么对于但一值的情况如何转换呢?...(3, 10.0, 0.0) )).toDF("id", "features","result") df.show() 参考文献 系列文章: 正则化、标准化、归一化基本概念简介...spark 中的正则化 spark 中的标准化 spark 中的归一化 扩展spark 的归一化函数 spark 中的 特征相关内容处理的文档 http://spark.apache.org/docs
题目描述 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。...> right = new PriorityQueue(); public void setN(int n) { N = n; } /* 当前数据流读入的元素个数...void insert(Integer val) { /* 插入要保证两个堆存于平衡状态 */ if (N % 2 == 0) { /* N 为偶数的情况下插入到右半边...* 因为右半边元素都要大于左半边,但是新插入的元素不一定比左半边元素来的大, * 因此需要先将元素插入左半边,然后利用左半边为大顶堆的特点,取出堆顶元素即为最大元素,此时插入右半边
题目描述 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。...我们使用Insert()方法读取数据流,使用GetMedian()方法获取当前读取数据的中位数。 解题思路 我们可以将数据排序后分为两部分,左边部分的数据总是比右边的数据小。...那么,我们就可以用最大堆和最小堆来装载这些数据: 最大堆装左边的数据,取出堆顶(最大的数)的时间复杂度是O(1) 最小堆装右边的数据,同样,取出堆顶(最小的数)的时间复杂度是O(1) 从数据流中拿到一个数后...,先按顺序插入堆中:如果左边的最大堆是否为空或者该数小于等于最大堆顶的数,则把它插入最大堆,否则插入最小堆。...要获取中位数的话,直接判断最大堆和最小堆的size,如果相等,则分别取出两个堆的堆顶除以2得到中位数,不然,就是最大堆的size要比最小堆的size大,这时直接取出最大堆的堆顶就是我们要的中位数。
题目描述 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。...我们使用Insert()方法读取数据流,使用GetMedian()方法获取当前读取数据的中位数。...两个堆实现思路 为了保证插入新数据和取中位数的时间效率都高效,这里使用大顶堆+小顶堆的容器,并且满足: 1、两个堆中的数据数目差不能超过1,这样可以使中位数只会出现在两个堆的交接处; 2、大顶堆的所有数据都小于小顶堆...new Double((minHeap.peek() + MaxHeap.peek())+"")/2:new Double(MaxHeap.peek()+""); } 方法二:普通排序,找中位数时候如果奇数直接返回
BN 需要用到足够大的批大小(例如,每个工作站采用 32 的批量大小)。一个小批量会导致估算批统计不准确,减小 BN 的批大小会极大地增加模型错误率。加大批大小又会导致内存不够用。? 归一化的分类?...BN,LN,IN,GN从学术化上解释差异:BatchNorm:batch方向做归一化,算N*H*W的均值LayerNorm:channel方向做归一化,算C*H*W的均值InstanceNorm:一个channel...内做归一化,算H*W的均值GroupNorm:将channel方向分group,然后每个group内做归一化,算(C//G)*H*W的均值LN 和 IN 在视觉识别上的成功率都是很有限的,对于训练序列模型...所以,在视觉领域,BN用的比较多,GN就是为了改善BN的不足而来的。GN 把通道分为组,并计算每一组之内的均值和方差,以进行归一化。GN 的计算与批量大小无关,其精度也在各种批量大小下保持稳定。...怎么做在现有深度学习框架下可以轻松实现组归一化。?效果?
在这篇文章中,我将使用类比和可视化的方式来回顾这些方法中,这将帮助您了解它们的产生的原因和思维过程。 为什么要归一化? 例如,我们现在用两个特征构建一个简单的神经网络模型。...在深度神经网络中,由于层数是固定的,因此很容易存储每个 BN 层的统计信息。然而在 RNN 中,输入和输出形状的长度不同。...batch(N) 中的每个示例都在 [C, H, W] 维度上进行了归一化。...上面的针对于激活的归一化方法我们基本上都听说过也经常会用到,下面我们来介绍针对权重的归一化方法。...总结 归一化是深度学习中的一个基本概念。它加快了计算速度并稳定了训练。多年来发展了许多不同的技术。
Micrometer的Timer类中的publishPercentiles方法使用0.5, 0.95, 0.99这三个百分位数,是因为它们在性能监控和SLA(Service Level Agreement...下面对这三个百分位数进行详细解析: 0.5(Median)中位数:中位数表示所有观测值排序后位于中间位置的值。它可以有效避免异常值的影响,提供对数据集中心趋势的度量。...在性能监控中,中位数能够反映出系统在正常运行条件下的平均响应时间,对于评估系统的一般性能非常有用。...0.95(95th Percentile):95th 百分位数表示在所有观测值中,有95%的数据低于这个值。它是评估系统在高负载情况下性能的重要指标,尤其是在需要确保绝大多数用户获得良好体验的情况下。...在SLA中,这个指标通常被用来定义性能目标,例如“95%的请求应在1秒内完成”。 0.99(99th Percentile):99th 百分位数则是更为严格的性能指标,它表明有99%的数据低于此值。