首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

「R」R检验中的“数据是恆量”问题

这是一般做基因差异表达分析在使用t检验或者其他统计检验中常出现的一个问题。...所遇到的问题: 分析两个样本之间是否存在差异,每个样本三个重复。现在用的是t.test,但有些样本三个重复的值一样(比如有0,0,0或者2,2,2之类的),想问下像这种数据应该用什么检验方法呢?...以下是我的回答: 数据是恒量是无法做t检验的,因为计算公式分母为0(不懂的看下统计量t的计算公式,一般标准差/标准误为分母,所以恒量是不能算的)。...因为你要用t检验,我给你一个处理思路, 先不分组别,按基因名检查所有样本的基因表达值(循环)是否一样,如果一样就丢掉,如果不一样,则按组别判断样本(每组3个)基因表达是否一样,如果不一样进行t检验寻找一批差异基因...9508518/why-are-these-numbers-not-equal https://stackoverflow.com/questions/23093095/t-test-failed-in-r

4.8K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【数据分析 R语言实战】学习笔记 第八章 单因素方差分析与R实现

    协方差是在方差分析的基础上,综合回归分析的方法,研究如何调节协变量对因变量的影响效应,从而更加有效地分析实验处理效应的一种统计技术。...8.1单因素方差分析及R实现 (1)正态性检验 对数据的正态性,利用Shapiro-Wilk正态检验方法(W检验),它通常用于样本容量n≤50时,检验样本是否符合正态分布。...R中,函数shapiro.test()提供了W统计量和相应P值,所以可以直接使用P值作为判断标准,其调用格式为shapiro.test(x),参数x即所要检验的数据集,它是长度在35000之间的向量。...为了用单因素方差分析判断三个分行此项业绩指标是否相同,首先对二个分行的账户余额分别进行正态检验。 ?...(2)方差齐性检验 方差分析的另一个假设:方差齐性,需要检验不同水平卜的数据方差是否相等。

    2.4K30

    R中的常用的检验方法

    1.独立样本的t检验 t.test调用格式1:其中是一个数值型变量,x为二分变量 t.test(y~x, data) t.test调用格式2:其中有y1,y2为数值型变量。...2.非独立样本的t检验 如,年长的男性与年轻的男性失业率概率是否相同,此时,年龄与失业率是有关的,所以是非独立的。 非独立样本的t检验假定组间差异呈正态分布。...3.卡方独立性检验 卡方检验可以使用chisq.test()函数对二维表的行变量或者列变量进行检验。...############################################################## 以下为在真实病例中的应用,检验两种不同的疾病与年龄,性别以及发病部位有无显著差异...性别以及发病部位与两种病的关系用卡方独立检验: a<-xtabs(~class+sex,data) b<-xtabs(~class+part,data) chisq.test(a) chisq.test

    99220

    R语言做正态性检验的一个小例子

    R语言里做做正态性检验通常用到的函数是shaporo.test(),这个是叫Shapiro-Wilk(夏皮罗-威尔克)正态性性检验。...对应的原假设是 样本X来自的总体具有正态性分布 比如代码 > x<-rnorm(100) > shapiro.test(x) Shapiro-Wilk normality test data:...第一个想到的是 在大于5000的样本里再随机选一个小于5000的样本就可以了 示例代码 x<-rnorm(6000) x1<-sample(x,3000,replace = F) shapiro.test...normality-test-in-r 示例代码 x<-rnorm(6000) library(ggpubr) p1<-ggdensity(x) p2<-ggqqplot(x) library(cowplot...另外还找到一个函数 ad.test() 这个函数对应的R包 nortest 找到这个函数的链接是 https://github.com/jamovi/jmv/issues/160 这个函数对应的是 Anderson-Darling

    3.6K40

    R语言数据分布检验的小例子

    首先是试验设计 5个人,发150次红包,每次50块,为了排除其他变量的干扰比如人品等因素,每抢30次调换一下顺序。然后对数据进行统计。...image.png 第一个小知识点:R语言里产生符合均匀分布的随机数的函数是runif() https://stat.ethz.ch/R-manual/R-devel/library/stats/html...image.png 为了验证这个想法使用Kolmogorov-Smirnov Test检验(简称K-S检验)验证数据是否符合均均分布 第二个知识点:R语言只中K-S检验的函数是ks.test() https...://stat.ethz.ch/R-manual/R-devel/library/stats/html/ks.test.html 假设检验的原假设H0是数据符合指定分布,P值小于0.05拒绝原假设 >...接下来是k样本Anderson-Darling检验 主要作用是检验几个样本是否来自同一总体 R语言里的实现函数是ad.test() install.packages("nortest") library

    2.3K10

    R语言T检验的简单小例子

    T检验是用来检验两组数据之间均值是否有差异的一种方法,比如下面我们用到的数据包括20个男生和20个女生的体重数据。...于是在理想的群体中随机抽取20个男生和20个女生测量体重,记录数据。 这时候的统计检验方法就可以选择T检验。...本篇文章的内容参考https://www.datanovia.com/en/lessons/how-to-do-a-t-test-in-r-calculation-and-reporting/how-to-do-two-sample-t-test-in-r...这个做的是Welch Two Sample t-test,如果要做学生式T检验,可以在t.test()函数里加var.equal=T参数 > t.test(women_weight,men_weight...,女生的数据方第二个参数,alternative = "greater"是指备择假设是男生体重大于女生,对应的零假设就是男生体重不大于女生。

    1.5K61

    R中的假设检验方法

    此外还有一些非参数检验方法,例如Shapiro-Wilk检验,即W检验,适用于样本含量n≤50时的正态性检验。...Kruskal-Wallis检验,在R中可以使用kruskal.test()函数进行,其使用格式如下所示: kruskal.test(y~A, data=data.frame) 其中A是拥有2个或更多水平的因子变量...在R中为friedman.test()函数,其使用格式如下所示: friedman.test(y~A|B, data=data.frame) friedman.test(X) 其中A为一个分组变量(groups...由于是基于超几何分布,因此Fisher精确检验只能检验两个小样本二进制变量的独立性,也即两个变量均是只有两个取值的因子变量。...皮尔森卡方检验主要是比较两个及两个以上样本率(构成比)以及两个分类变量的关联性分析,构成比实际上是列联表的另一种方式,假设有以下列联表: 这个问题可以表述为发癌与处理的关联问题,也可以表述为两个处理的发癌率关联问题

    1.4K30

    你需要学会100个使用R语言进行的统计检验例子吗

    看到了微信聊天群有人推荐了《100 STATISTICAL TESTS IN R》,该书籍介绍了基于R的100个统计检验小例子。我简单的看了看目录,全英文的,很生疏,感觉没有多大意思。...所以,我让chatGPT帮我罗列了最常见的10个使用R语言进行的统计检验例子,如下所示,以供参考: t检验:比较两组样本均值是否显著不同,例如比较两组学生在某一门考试成绩的差异。...Wilcoxon符号秩检验:用于比较配对样本的差异,例如比较患者治疗前后的生物标记物水平。 Fisher精确检验:用于比较两个分类变量的分布是否相关,例如比较两种治疗方法对疾病治愈率的影响。...而且chatGPT还给我了R语言代码案例: # 两组样本的t检验 # 假设数据存储在两个向量x和y中 result <- t.test(x, y) print(result) # 多组样本的单因素方差分析...在使用这些检验前,请确保对统计检验有足够的理解,并根据实际情况进行适当的数据处理和分析。另外,R语言中有许多相关的包和函数可以实现更多类型的统计检验,您可以根据具体需求搜索相关文档和资料。

    31620

    方差分析与R实现

    单因素方差分析及R实现 (1)正态性检验 对数据的正态性,利用Shapiro-Wilk正态检验方法(W检验),它通常用于样本容量n≤50时,检验样本是否符合正态分布。...R中,函数shapiro.test()提供了W统计量和相应P值,所以可以直接使用P值作为判断标准,其调用格式为shapiro.test(x),参数x即所要检验的数据集,它是长度在35000之间的向量。...例: 某银行规定VIP客户的月均账户余额要达到100万元,并以此作为比较各分行业绩的一项指标。这里分行即因子,账户余额是所要检验的指标,先从三个分行中,分别随机抽取7个VIP客户的账户。...为了用单因素方差分析判断三个分行此项业绩指标是否相同,首先对二个分行的账户余额分别进行正态检验。 ?...(2)方差齐性检验 方差分析的另一个假设:方差齐性,需要检验不同水平卜的数据方差是否相等。

    1.8K50

    R语言Poisson回归的拟合优度检验

    偏差拟合度检验 由于偏差度量衡量了模型预测与观察结果的接近程度,我们可能会考虑将其作为给定模型拟合度检验的基础。...在R中执行拟合优度测试 现在看看如何在R中执行拟合优度测试。...首先我们将模拟一些简单的数据,具有均匀分布的协变量x和泊松结果y: set.seed(612312) n < - 1000 x < - runif(n) y 个观测值,我们的模型有两个参数,因此自由度为998,由R作为残差df给出。...因此,我们有充分的证据表明我们的模型非常适合。 通过仿真检验泊松回归拟合检验的偏差优度 为了研究测试的性能,我们进行了一个小的模拟研究。我们将使用与以前相同的数据生成机制生成10,000个数据集。

    2.2K10

    R语言meta分析(2)单个率的Meta分析

    其中变量 Author Year Case Number分别表示文献的第一作者,发表年份,患者和调查的总人数和。...), “PAS”(反正弦转换),“PFT“(Freeman-Tukey双重反正弦转换), 在进行Meta分析之前,对原始率及按四种估计方法进行转换后的率进行正态性检验,根据检验结果选择最接近正态分布的方法..., 然后通过比较异质性的大小,选择一个合适的类型。...结果显示,异质性检验Q=4.07 P的异质性,所以优先选用固定效用模型,如果I2较大,说明6个原始研究间数据存在一定的异致性,则选用随机效应模型。...总结 本文结合实例,介绍了在R软件中如何实现单个率的资料Meta分析,由于单个率的Meta分析各原始文献为单个组的率,稳定性可能不同于具有两个组的研究,因此在合并时统计学异质性可能会比较大,当异质性较大时

    6.1K21

    R语言单、双因素方差分析及结果可视化的简单小例子

    数据准备 这里用到的是R语言的内置数据集sample_n_by()函数很有用,能够分组随机抽样%>% 是管道符 是将前面的结果传输给后面的函数 data("PlantGrowth") set.seed...(1234) PlantGrowth %>% sample_n_by(group, size = 1) 函数sample_n_by()加载和检查数据,按组显示随机的一行 显示分组变量的levels levels...分组正态性检验 PlantGrowth %>% group_by(group) %>% shapiro_test(weight) p > 0.05 假设成立 分组qq图 ggqqplot(PlantGrowth...test shapiro_test(residuals(model1)) 假设通过 按组检验正态性 jobsatisfaction %>% group_by(gender, education_level...小明的数据分析笔记本 小明的数据分析笔记本 公众号 主要分享:1、R语言和python做数据分析和数据可视化的简单小例子;2、园艺植物相关转录组学、基因组学、群体遗传学文献阅读笔记;3、生物信息学入门学习资料及自己的学习笔记

    6.2K51

    R语言入门之非参数假设检验

    前言 在往期内容中,我已经和大家讲解了t检验和方差分析(ANOVA)在R语言中如何实现,这里需要注意:使用t检验和方差分析时,需要样本服从正态分布,并且方差齐性,或者经过变量变换后服从正态分布和方差齐性...但是如果我们的数据无论经过怎样的变量变换都达不到正态分布或方差齐性的要求,那么我们就需要使用基于秩次的非参数假设检验,非参数检验主要针对非正态样本,其统计效力会比带参数的假设检验要弱一些。...R语言里提供了许多可以进行非参数假设检验的函数,这里我们主要介绍三个常用的函数,一个是基于秩次的Wilcox秩和检验, Kruskal Wallis秩和检验和Friedman秩和检验。...正态性检验 shapiro.test(mydata$Sepal.Length[which(mydata$Species=='setosa')])#d对“setosa”的花萼长度进行正态性检验 shapiro.test...上面就是关于如何在R中进行非参数检验的方法,主要有三个函数:(1)独立双样本或配对样本的wilcox.test();(2)完全随机设计多个样本的Kruskal Wallis秩和检验kruskal.test

    2.1K20

    Python基本统计分析

    数据是否服从正态分布 符合正态分布(p>0.05) # Shapiro-Wilk test stat, p_value = spss.shapiro(v1) stat, p_value = spss.shapiro...r, p_value = spss.pearsonr(v1,v2) spearman v1,v2的分布没有特定的要求 r, p_value = spss.spearmanr(v1,v2) kendalltau...v1,v2的分布没有特定的要求 r, p_value = spss.kendalltau(v1,v2) 多个变量之间的相关性 协方差矩阵 df.cov(numeric_only=True) # sepal_length...# usa 0.625628 # japan 0.198492 # europe 0.175879 # Name: origin, dtype: float64 列联表 两个以上的变量交叉分类的频数分布表...如果观察总例数 n 小于 40,或者频数表里的某个期望频数很小(小于 1),则需要使用 Fisher 精确概率检验 spss.fisher_exact这个函数的输入只能是2X2的二维列联表,R中的fisher.test

    86630
    领券