首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

R:理解两个图之间的差异

R: 理解两个图之间的差异

差异分析(Difference Analysis)是一种比较和分析两个图之间差异的方法。通常,这两个图可以是同一系统或过程在不同时间或条件下的状态图,也可以是不同系统之间的对比。差异分析可以帮助我们理解和评估两个图之间的变化、发现问题和改进机会。

差异可以在多个方面出现,包括结构、功能、性能、用户体验等。以下是在差异分析中常见的几个方面:

  1. 结构差异:这种差异主要涉及两个图的组成部分和关系。可以通过比较两个图的元素、连接和布局来识别结构差异。例如,一个图中有一个额外的组件或连接,或者两个图的布局方式不同。
  2. 功能差异:这种差异涉及两个图的功能特性。可以通过比较两个图的功能列表或操作序列来识别功能差异。例如,一个图具有特定的功能,而另一个图没有,或者两个图的操作顺序不同。
  3. 性能差异:这种差异涉及两个图的性能指标,如响应时间、吞吐量等。可以通过比较两个图的性能数据来识别性能差异。例如,一个图的响应时间比另一个图长,或者两个图的吞吐量不同。
  4. 用户体验差异:这种差异涉及两个图的用户界面和用户交互方式。可以通过比较两个图的用户界面设计、操作流程和反馈机制来识别用户体验差异。例如,一个图的界面设计更简洁直观,或者两个图的操作流程有所不同。

在云计算领域,差异分析可以应用于多个场景。例如:

  • 云服务选择:通过对比不同云服务提供商的功能、性能和价格,进行差异分析可以帮助用户选择最适合自己需求的云服务。
  • 云架构设计:比较不同的云架构设计方案,识别其在结构、功能和性能方面的差异,可以帮助用户选择最佳的云架构。
  • 云迁移:在将应用程序或数据迁移到云端时,进行差异分析可以帮助用户理解在云环境下的差异,并做好适应性调整。

推荐的腾讯云相关产品:

  • 云服务器(ECS):腾讯云的云服务器提供了高性能、安全可靠的虚拟服务器实例,支持多种操作系统,适用于各种应用场景。详细信息请参考:腾讯云云服务器
  • 云数据库MySQL版(CDB):腾讯云的云数据库MySQL版提供了高可用、可扩展的MySQL数据库服务,支持自动备份、容灾、监控等功能。详细信息请参考:腾讯云云数据库MySQL版
  • 腾讯云CDN:腾讯云的内容分发网络(CDN)服务提供了快速、安全、稳定的全球加速服务,可以有效提升网站的访问速度和用户体验。详细信息请参考:腾讯云CDN
  • 人工智能机器学习平台:腾讯云的人工智能机器学习平台提供了丰富的人工智能算法和工具,可用于图像识别、自然语言处理、数据分析等领域。详细信息请参考:腾讯云人工智能机器学习平台

请注意,以上推荐的产品仅供参考,具体选择应根据实际需求和情况进行。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

eLife:人类和小鼠大脑解剖结构中性别差异的神经影像学对比

摘要:体内神经影像学研究已经确定了人脑中几种可重复的体积性别差异,但这种差异的原因很难解析。虽然小鼠模型有助于理解性别特异性大脑发育的细胞和机制基础,但还没有尝试正式比较人类和小鼠的神经解剖学性别差异。解决这个问题将为使用小鼠作为人脑性别差异的比较模型提供批判性的启示,并提供对哺乳动物脑容量性别差异保守程度的见解。在这里,我们使用结构磁共振成像对人类和小鼠大脑的性别特异性神经解剖学进行了首次神经成像比较研究。与之前的发现一致,我们观察到,在人类中,男性的总脑容量明显更大且变化更大,这些性别差异在小鼠身上没有反映出来。在控制了总脑容量后,我们观察到60个同源区域的性别体积效应大小存在适度的跨物种一致性。通过结合两个物种中基因表达的区域测量,我们发现在体积性别差异中具有更大跨物种一致性的皮质区域在2835个同源基因的表达谱中也显示出更大的跨物种一致性。这些发现有助于确定小鼠中存在的性别偏见的大脑解剖结构,这些结构在人类中被保留、丢失或倒置。更广泛地说,我们的工作为小鼠性别特异性大脑发育的机制研究定位到最能呼应人类性别特异性大脑发育的大脑区域提供了实证基础。

01
  • 人类小脑内在组织背后的基因图谱

    人类小脑的功能多样性在很大程度上被认为更多地来自于其广泛的联系,而不是局限于其部分不变的结构。然而,小脑内在组织中连接的确定是否以及如何与微尺度基因表达相互作用仍不清楚。在这里,我们通过研究同时连接小脑功能异质性及其驱动因素的遗传基质,即连接因素,来解码小脑功能组织的遗传图谱。我们不仅鉴定了443个网络特异性基因,而且还发现它们的共表达模式与小脑内功能连接(FC)密切相关。其中90个基因也与皮质-小脑认知-边缘网络的FC有关。进一步发现这些基因的生物学功能,我们进行了“虚拟基因敲除”,通过观察基因之间的耦合和FC以及将基因分成两个子集,即,一个涉及小脑神经发育的阳性基因贡献指标(GCI+)和一个与神经传递有关的阴性基因集(GCI−)。一个更有趣的发现是,GCI−与小脑连接-行为关联显著相关,并与许多公认的与小脑功能异常密切相关的脑部疾病密切相关。我们的研究结果可以共同帮助重新思考小脑功能组织背后的遗传底物,并为神经精神疾病中涉及小脑的高阶功能和功能障碍提供可能的微宏观相互作用的机制解释。

    02

    eLife: 脑岛的微观结构与宏观功能环路相互联系并能预测认知控制

    一、导读 人类的脑岛是一个在内部具有明显异质性的脑部结构,在认知行为控制中发挥着整合作用。上个世纪,脑岛的细胞构筑学研究依赖于尸体解剖大脑,在无创脑成像领域,其微观结构以及大尺度功能环路鲜有进展。近期发表在权威期刊eLife的一个研究:Microstructural organization of human insula is linked to its macrofunctional circuitry and predicts cognitive control,利用弥散张量成像,基于413名健康被试,发现脑岛各个亚区之间的微观结构存在显著的差异,且这些亚区分别负责不同的认知以及情感功能。脑岛的这种微观结构组织形式也映射到了在功能上与其相互连接的前扣带回(anterior cingulate cortex, ACC),该区域是负责切换认知控制功能的突显网络(salience network)的主要区域。这种微观组织结构趋势在恒河猴中得到验证,而且与行为之间建立联系并能够认知控制中个体间差异。这些新发现为研究与脑岛相关的疾病例如孤独症、精神分裂症以及额颞叶痴呆等疾病的病理机制探究中去。本文即对该研究作解读。

    00

    Cerebral Cortex: 大脑的功能发育与成长环境紧密相关

    《本文同步发布于“脑之说”微信公众号,欢迎搜索关注~~》 一、背景    大脑的发育受多方面因素影响,较高的社会经济地位(higher socioeconomic status, SES)就是其中一个重要的因素。儿童、青少年时期的SES与其较强的认知能力,学业成就和较低的精神疾病发病率有关,甚至会影响婴儿时期的大脑皮层发育。已有的一些研究发现SES与大脑的结构发育呈现紧密关系,具体表现为低SES个体的大脑结构发育加速,这表明SES会调节年龄和大脑结构发展之间的关系,目前尚不清楚其在大脑功能发育中是否存在这种调节关系,这促使人们深入地研究社会经济地位是否以及如何影响青少年大脑功能网络的发育。在大多数这些研究中,关于SES的研究是在家庭层面进行的,包括家庭收入,成员学历等,部分研究也关注了邻里社区SES的影响。然而已有的研究结果还不足以清晰的揭示SES与儿童、青少年的大脑功能发育之间的关系,以及SES是如何影响的发育的,特别是与年龄的交互作用。该研究利用费城跨年龄段的大样本横断面影像数据来研究年龄,SES和大脑功能网络拓扑之间的关系,分别从全脑水平,网络水平,以及单个大脑区域三个层次,利用图论的聚类系数和模块化指数两个网络指标,从整体到局部的研究了在青少年发育过程中,SES对其功能网络拓扑结构的影响。该研究为SES与功能网络拓扑的发展之间的联系提供了证据,为早期成长环境影响大脑神经活动提供了更深入的见解。 二、材料和方法 1、被试和数据    从Philadelphia Neurodevelopmental Cohort(PNC)数据集中选取符合排除标准的,年龄在8到22岁之间的,1012名儿童和青少年的神经影像数据,其中平均年龄15.78,女性552名。SES的测量结合了被试社区的结婚率,贫困人口比例,家庭收入以及邻里家庭收入,教育占比,人口密度,就业率等多个特征计算其SES得分。结构和功能数据的预处理借助ANTs和XCP工具包处理,将功能数据映射到皮层上进行后续功能网络分析 2、构建功能网络    对每个被试,提取N = 360 个皮层区域的BOLD信号,通过计算皮尔逊相关系数来表示每两个区域之间的功能连接,最后得到了一个360*360的功能连接矩阵,如图1。基于个体数据的差异性与局限性,只有359个节点被纳入到后续分析中。

    01

    PNAS:人类大脑性别间差异研究—基于结构、功能及转录组多模态分析

    导读 人类大脑在许多认知以及行为等方面都表现出明显的性别差异,这些差异具有可重复性,而且更为重要的是,这些差异或许可以反映不同性别间大脑内部局部组织的不同。这些差异的稳定性、起因以及产生的影响被广泛、热烈的讨论,但却没有被细致的研究过。加之最近在啮齿类动物中的一系列研究建立了性别差异在神经生理学上的理论基础:1)局部灰质体积(regional gray matter volume,regional GMV)的性别差异稳定的分布在大脑皮层以及一些经典的皮下核团;2)与社交以及生殖行为有关的神经环路在局部GMV差异分布中占据主导地位;3)性染色体的基因表达与GMV差异模式具有耦合关系。这篇发表在美国科学院院报(PNAS)题为“Integrative structural, functional, and transcriptomic analyses of sex-biased brain organization in humans”的文章,便是基于啮齿类动物中的研究基础,针对在人类大脑中该类问题的研究空白,对性别差异从脑结构、脑认知活动以及基因表达多模态多尺度做了全方位细致的探究。下面即对本文作解读。

    03

    大脑和行为个体化模型的精神病学生物标志物识别

    转化神经科学的一个主要目标是识别精神病理学的神经相关因素(“生物标志物”),可用于促进诊断、预后和治疗。这一目标已经导致了对精神病理学症状如何与大规模的大脑系统相关的大量研究。然而,这些努力还没有产生在临床实践中使用的实际生物标志物。这一令人失望的进展的一个原因可能是,许多研究设计关注的重点是增加样本量,而不是在每个个体中收集额外的数据。这一焦点限制了任何一个人的大脑和行为测量的信度和预测效度。由于生物标记物存在于个体的水平上,因此更加关注在个体中验证它们是有必要的。我们认为,从个人内部的大量数据收集中估计出来的个性化模型可以解决这些问题。我们回顾了来自两个迄今为止独立的关于(1)精神病理症状和(2)大脑网络功能磁共振成像测量的个性化模型研究的证据。最后,我们提出了跨两个领域的方法,以改进生物标志物研究。

    03

    NATURE COMMUNICATIONS:大脑白质网络可控性的发育增长支持了脑动力学的多样性

    白质在人脑中扮演着极为重要的角色,从神经基础看,白质是支配大脑神经冲动,感受突触刺激的中枢。在中枢神经系统内,组成各种传导束;在周围神经系统内,则集合为分布于全身各组织和器官的脑神经、脊神经和植物性神经。在已有研究中已经发现,白质的发育在人脑发育过程中扮演着极为重要的角色,如人类大脑“小世界属性”中远距离连接的结构基础就是由长距离的白质连接。再如,已有多篇研究发现人类的智力水平与白质发育有关,与智力发育存在显著相关的 N-乙酰-天冬氨酸是少突胶质细胞的代谢产物,而少突胶质细胞正是使神经纤维髓鞘化的细胞。

    03

    大脑年龄预测:机器学习工作流程的系统比较研究

    脑解剖扫描预测的年龄和实际年龄之间的差异,如脑年龄增量,为非典型性衰老提供了一个指示。机器学习 (ML) 算法已被用于大脑年龄的估计,然而这些算法的性能,包括(1)数据集内的准确性,  (2)跨数据集的泛化,  (3)重新测试的可靠性,和(4)纵向一致性仍然没有确定可比较的标准。本研究评估了128个工作流程,其中包括来自灰质 (GM) 图像的16个特征和8个具有不同归纳偏差的ML算法。利用四个覆盖成人寿命的大型神经成像数据库进行分析 (总N=2953,18-88岁),显示了包含4.73—8.38年的数据集中平均绝对误差 (MAE ) ,其中32个广泛抽样的工作流显示了包含5.23—8.98年的交叉数据集的MAE。结果得到:前10个工作流程的重测信度和纵向一致性具有可比性。特征的选择和ML算法都影响了性能。具体来说,体素级特征空间 (平滑和重采样) ,有和没有主成分分析,非线性和基于核的ML算法表现良好。在数据集内和跨数据集内的预测之间,大脑年龄增量与行为测量的相关性不一致。在ADNI样本上应用表现最佳的工作流程显示,与健康对照组相比,阿尔茨海默病患者和轻度认知障碍患者的脑龄增量明显高于健康对照组。在存在年龄偏倚的情况下,患者的脑龄增量估计因用于偏倚校正的样本而不同。总之,大脑年龄具有一定应用前景,但还需要进一步的评估和改进。

    02

    PNAS:网络连接的中断预示着中风后多种行为障碍

    中风后的行为障碍通常归因于局灶性损伤,但最近的证据表明,分布式脑网络破坏起着关键作用。来自华盛顿医学院研究人员在PNAS发文,他们招募了132名中风患者,测量静息态功能连接、病灶分布和多类行为表现(注意、视觉记忆、形象记忆、语言、运动和视觉),并使用机器学习模型来预测单个受试者的神经损伤。结果发现,FC能更好地预测视觉记忆和形象记忆,而病灶图能更好地预测视觉和运动损伤。两者都能很好地预测注意力和语言缺陷。接下来,研究者确定了生理网络功能障碍的一般模式,包括半球间整合和半球内连接的减少,这与多个领域的行为损伤密切相关。网络特异性的功能障碍模式预测了特定的行为障碍,而跨网络模块的大脑半球间沟通的丧失与跨多个行为领域的损伤相关。这些结果将大脑网络的关键组织特征与中风的大脑行为关系联系起来,阐明了脑结构与脑功能的补充价值,并为中风后多个行为领域障碍提供了生理机制。本文发表在PNAS杂志。

    02

    通过沉浸式虚拟现实观察动作增强运动想象训练

    1、研究背景 增强运动想象的一种方法是动作观察,也就是观察与运动想象任务相关的身体部位的运动。先前的研究表明,镜像神经元通过模仿来进行动作的理解和学习,从而引起相应区域的激活。因此,当一个人观察到另一个实体反映想象的身体运动时,动作观察起到了诱导镜像神经元的刺激作用。 2D和3D运动的事件相关去同步化(ERD)模式有显著差异,3D可视化组的ERD增强。更丰富的可视化和对观察到的运动的更强的所有权可诱导更好的ERD发生。 近期,发表在《IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING》杂志上的一篇研究论文通过对握手动作的动作观察,探讨虚拟现实(VR)的丰富沉浸感是否会影响重复的运动想象训练。为了研究显示介质的不同是否会影响进行运动想象时的动作观察,研究者通过两种不同的显示器显示了相同的图形握手动作:沉浸式VR耳机和显示器。此外,该研究以图形情景为刺激,更加强调沉浸式VR中的错觉和具体化对运动想象训练中动作观察的影响。为了检查使用这两种不同介质时的大脑活动,研究者使用了EEG,并识别了感觉运动皮层诱发的神经信号的变化。为了测量不同运动想象任务中空间脑活动模式的可区分性,研究者应用了脑机接口中常用的机器学习技术来学习和区分不同类型的运动想象中的脑活动。

    00
    领券